طراحی و ساخت قفل الکترونيکي

رديابي گوشی همراه

كنترل هوشمند چهارراه

طراحی و ساخت مين ياب هوشمند

ادامه 

موضوع مقاله :انرژی های نوين

 

طبق آمارهای به ثبت رسیده طی 30 سال گذشته احتیاجات انرژی جهان به مقدار قابل ملاحظه ای افزایش یافته است. در سال 1960 مصرف انرژی جهان معادل 3/3Gtoe  بوده است.در سال 1990 این رقم به 8/8Gtoeبالغ گردید ، که دارای رشد متوسط سالانه 3/3 درصد می باشد و در مجموع 166 در صد افزایش نشان می دهد و در حال حاضر مصرف انرژی جهان 10Gtoe/Year  بوده و پیش بینی می شود این رقم در سالهای 2010 و 2020 به 12 و 14 Gtoe/Yearافزایش یابد . این ارقام نشان می دهند که میزان مصرف انرژی جهان در قرن آینده بالا می باشد و بالطبع این سوال مهم مطرح می باشد که آیا منابع انرژی های فسیلی در قرنهای آینده، جوابگوی نیاز انرژی جهان برای بقا، تکامل و توسعه خواهند بودیا خیر؟
حداقل به دو دلیل عمده پاسخ این سوال منفی است و باید منابع جدید انرژی را جایگزین این منابع نمود. این دلایل عبارتند از:
محدودیت و در عین حال مرغوبیت انرژی های فسیلی چرا که این سوختها از نوع انرژی شیمیایی متمرکز بوده و مسلماً کاربردهای بهتر از احتراق دارند.


مسایل و مشکلات زیست محیطی بطوری که امروزه حفظ سلامت اتمسفر از مهمترین پیش شرطهای توسعه اقتصادی پایدار جهانی به شمار می آید. از این رو است که دهه های آینده بعنوان سالهای تلاش مشترک جامعه انسانی برای کنترل انتشار کربن، کنترل محیط زیست و در واقع تلاش برای تداوم انسان بر روی کره زمین خواهد بود .


بنابراین استفاده از منابع جدید انرژی به جای منابع فسیلی امری الزامی است. سیستمهای جدید انرژی در آینده باید متکی به تغییرات ساختاری و بنیادی باشد که در آن منابع انرژی بدون کربن نظیر انرژی خورشیدی و بادی و زمین گرمایی و کربن خنثی مانند انرژی بیوماس مورد استفاده قرار می گیرند. بدون تردید انرژی های تجدیدپذیر با توجه به سادگی فن آوریشان در مقابل فن آوری انرژی هسته ای از یک طرف و نیز بدلیل عدم ایجاد مشکلاتی نظیر زباله های اتمی از طرف دیگر نقش مهمی در سیستمهای جدید انرژی در جهان ایفا می کنند. در هر حال باید اذعان داشت که در عمل عوامل متعددی بویژه هزینه اولیه و قیمت تمام شده بالا، عدم سرمایه گذاری کافی برای بومی نمودن و بهبود کارآیی تکنولوژیهای مربوطه ، به حساب نیامدن هزینه های خارجی در معادلات اقتصادی، نبود سیاستهای حمایتی در سطح جهانی، منطقه ای و محلی، نفوذ و توسعه انرژی های نو را بسیار کند و محدود ساخته است. ولی پژوهشگران و صنعتگران همواره تلاش خود را جهت رفع این مشکلات مبذول می دارند.


بطور کلی عمده فعالیتهای مربوط به احداث پایلوتهای سازگار با محیط زیست با بکار بردن منابع انرژی های تجدیدپذیر و اجرای پروژه های مهندسی و انجام خدمات مشاوره ای و مدیریت بر طرحها، در چهار بخش ذیل متمرکز شده است:

 

  • 1. انرژی های خورشیدی
  • 2. انرژی باد و امواج
  • 3. انرژی زمین گرمایی
  • 4. فن آوری هیدروژن ، پیل سوختی و زیست توده
  •     
  • که در اینجا به توضیح اجمالی هر یک می پردازیم:


1- انرژی خورشیدی


جالب است بدانید که تابش خورشید بزرگترین منبع تجدید پذیر انرژی روی کره زمین می باشد و اگر فقط یک درصد از صحراهای جهان با نیروگاه های حرارتی خورشیدی به کار گرفته شوند، همین مقدار برای تولید برق سالانه مورد تقاضای جهان کافی خواهد بود. برای سود جستن از انرژی خورشیدی دو راه وجود دارد :


استفاده مستقیم از نور خورشیدو تبدیل آن به الکتریسیته از طریق سلولهای فتوولتائیک


استفاده مستقیم از انرژی خورشیدی و تبدیل آن به انواع انرژی های دیگر و یا استفاده مستقیم از آن (کاربردهای نیروگاهی و غیر

نیروگاهی خورشیدی)


یک نیروگاه خورشیدی شامل تاسیساتی است که انرژی تابشی خورشید را جمع کرده و با متمرکز کردن آن، درجه حرارتهای بالا ایجاد می کند. انرژی جمع آوری شده از طریق مبدلهای حرارتی، توربین ژنراتورها و یا موتورهای بخار به انرژی الکتریکی تبدیل خواهد شد. نیروگاه های خورشیدی بر اساس نوع متمرکز کننده ها به سه دسته تقسیم می شوند:


نیروگاه سهموی خطی (Parabolic TroughCollectors)


نیروگاه دریافت کننده مرکزی(C.R.S)


نیروگاه دیش استرلینگ( این تکنولوژی در نیروگاه های خورشیدی مورد استفاده کمتری دارد و در کاربردهای غیر نیروگاهی بیشتر استفاده می شوند.)

 

نیروگاه سهموی خطی 250 کیلووات شیراز

 

نیروگاه سهموی خطی 250 کیلووات شیراز

 


از انرژی حرارتی خورشید علاوه بر استفاده نیروگاهی، می توان در زمینه های زیر بصورت صنعتی، تجاری و خانگی استفاده کرد:


گرمایش آب مصرفی( آب گرمکنهای خورشیدی برای منارل، ساختمانها، کارخانجات و استخرها)


گرمایش فضای داخلی ساختمانها


سرمایش فضای داخلی ساختمانها و یخچالهای خورشیدی


آب شیرین کنهای خورشیدی (در اندازه های خانگی و صنعتی)


خشک کنهای خورشیدی ( برای خشک کردن مواد غذایی و محصولات کشاورزی)


خوراک پزهای خورشیدی



2- انرژی باد و امواج


به منظور شناخت دقیق محدودیتها، موانع و امکانات موجود در جهت استفاده از منابع انرژی در کشور، ضرورری است .میزان بهره برداری از پتانسیلهای موجود انرژی و روند تحولات حاملهای انرژیهای تجدیدپذیر در کشور نیز به روش علمی و دقیق محاسبه و ارزیابی گردد.


کشور ایران از لحاظ منابع مختلف انرژی یکی از غنی ترین کشورهای جهان محسوب می گردد، چرا که از یک سو دارای منابع گسترده سوختهای فسیلی و تجدید ناپذیر نظیر نفت و گاز است و از سوی دیگر دارای پتانسیل فراوان انرژیهای تجدید پذیر از جمله باد می باشد.


با توسعه نگرشهای زیست محیطی وراهبردهای صرفه جویانه در بهره برداری از منابع انرژیهای تجدید ناپذیر، استفاده از انرژی باد در مقایسه با سایر منابع انرژی مطرح در بسیاری از کشورهای جهان رو به فزونی گذاشته است. استفاده از تکنولوژی توربینهای بادی به دلایل زیر می تواندیک انتخاب مناسب در مقایسه با سایر منابع انرژی تجدید پذیر باشد.


قیمت پایین توربینهای برق بادی در مقایسه با دیگر صور انرژیهای نو


کمک در جهت ایجاد اشتغال در کشور


عدم آلودگی محیط زیست در کشورهای پیشرفته نظیر آلمان، دانمارک، آمریکا،اسپانیا، انگلستان، و بسیاری کشورهای دیگر، توربینهای بادی بزرگ و کوچک ساخته شده است و برنامه هایی نیز جهت ادامه پژوهشها و استفاده بیشتر از انرژی باد جهت تولید برق در واحدهایی با توان چند مگاواتی مورد مطالعه می باشد.


در ایران نیز با توجه به وجود مناطق بادخیز طراحی و ساخت آسیابهای بادی از 2000 سال پیش از میلاد مسیح رایج بوده و هم اکنون نیز بستر مناسبی جهت گسترش بهره برداری از توربینهای بادی فراهم می باشد.مولدهای برق بادی می تواند جایگزین مناسبی برای نیروگاه های گازی و بخاری باشند. مطالعات و محاسبات انجام شده در زمینه تخمین پتانسیل انرژی باد در ایران نشان داده اند که تنها در 26 منطقه از کشور( شامل بیش از 45 سایت مناسب) میزان ظرفیت اسمی سایتها، با در نظر گرفتن یک راندمان کلی 33%، در حدود 6500 مگاوات می باشد و این در شرایطی است که ظرفیت اسمی کل نیروگاه های برق کشور، (در حال حاضر) 34000 مگاوات می باشد. در توربینهای بادی، انرژی جنبشی باد به انرژی مکانیکی و سپس به انرژی الکتریکی تبدیل می گردد.


استفاده فنی از انرژی باد وقتی ممکن است که متوسط سرعت باد در محدوده 5/ الی 25/ باشد. پتانسیل قابل بهره برداری انرژی باد در جهان 110 اگاژول (هر اگاژول معادی 1018ژول) برآورد گردیده است که از این مقدار 40 مگاوات ظرفیت نصب شده تا اواخر سال 2003 میلادی(1382 ه.ش.) در جهان می باشد.


از مزایای استفاده از این انرژی عدم نیاز توربین بادی به سوخت، تامین بخشی از تقاضاهای انرژی برق، کمتر بودن نسبی انرژی باد نسبت به انرژی فسیلی در بلند مدت، تنوع بخشیدن به منابع انرژی و ایجاد سیستم پایدار انرژی، قدرت مانور زیاد در بهره برداری( از چند وات تا چندین مگاوات) ، عدم نیاز به آب و نداشتن آلودگی محیط زیست می باشد.

توربين 660 وات منجيل


توربین 600 کیلو وات واقع در روستای بابائیان منجیل

 


توربینهای بادی کوچک


از توربینهای بادی کوچک جهت تامین برق جزیره های مصرف و یا مناطقی که تامین برق از طریق شبکه سراسری برق مشکل می باشد استفاده می شود. این توربینها تا قدرت 10 کیلووات توان تولید برق را دارا می باشند.

توربینهای بادی متوسط


عموماً تولید این توربینها بین 250-10 کیلووات است. از این توربینها جهت تامین مصارف مسکونی، تجاری، صنعتی و کشاورزی استفاده می شود.



توربینهای بادی بزرگ( مزارع بادی)



این نوع توربینها معمولاً شامل چند توربین بادی متمرکز با توان تولیدی 250 کیلووات به بالا می باشند که به صورت متصل به شبکه و یا جدا از شبکه طراحی می گردند.

 

3- انرژی زمین گرمایی


مرکز زمین( به عمق تقریبی 6400 کیلومتر)که در حدود 4000 درجه سانتیگراد حرارت دارد، به عنوان یک منبع حرارتی عمل نموده و موجب تشکیل و پیدایش مواد مذاب با درجه حرارت 650 تا 1200 درجه سانتیگراد در اعماق 80 تا 100 کیلومتری از سطح زمین می گردد. بطورمیانگین میزان انتشار این حرارت از سطح زمین که فرایندی مستمر است معادل 82 میلی وات در واحد سطح است که با در نظر گرفتن مساحت کل سطح زمین(10*1/5 متر مربع) ، مجموع کل اتلاف حرارت از سطح آن، برابر با 42 ملیون مگاوات است. در واقع این میزان حرارت غیر عادی، عامل اصلی پدیده های زمین شناسی از جمله فعالیتهای آتشفشانی، ایجاد زمین لرزه ها، پیدایش رشته کوه ها( فعالیتهای کوه زایی) و همچنین جابجایی صفحات تکتونیکی می باشد که کره زمین را به یک سیستم دینامیک تبدیل نموده و پیوسته آن را تحت تغییرات گوناگون قرار می دهد.
امروزه با بهره گیری از فنآوریهای موجود، تنها بخش کوچکی از این منبع سرشار مهار شده و بطور اقتصادی قابل بهره برداری است.
بنابراین انرژی زمین گرمایی، همان انرژی حرارتی قابل استحصال از پوسته جامد زمین است. انرژی زمین گرمایی بر خلاف سایر انرژی های تجدیدپذیر منشاء یک انرژی پایدار با فاکتور دسترسی 100% است که بطور شبانه روزی در طول سال قابل بهره برداری است.

 

خروج بخار از یک چاه زمین گرمایی

 


از انرژی زمین گرمایی در دو بخش کاربردهای نیروگاهی( غیر مستقیم) و غیر نیروگاهی ( مستقیم) استفاده می شود. تولید برق از منابع زمین گرمایی هم اکنون در22 کشور جهان صورت میگیرد که مجموع قدرت اسمی کل نیروگاههای تولید برق از این انرژی بیش از 8000 مگاوات می باشد. این در حالی است که بیش از 64 کشور جهان نیز با مجموع ظرفیت نصب شده بیش از 15000 مگاوات حرارتی از این منبع انرژی در کاربردهای غیر نیروگاهی بهره برداری می نمایند.

 


نیروگاه زمین گرمایی تبخیر آنی



در این نیروگاه ها سیالی که معمولاً به حالت دوفاز مایع و بخار از اعماق زمین واز طریق چاه های زمین گرمایی استخراج می شود به مخزن جدا کننده هدایت شده و بدینوسیله فاز بخار از فاز مایع جدا می شود.بخار جدا شده وارد توربین شده و باعث چرخش پره های توربین می شود.پره ها نیز به نوبه خود محور توربین و در نتیجه محور ژنراتور رابه حرکت وا می دارند که باعث بوجود آمدن قطبهای مثبت و منفی در ژنراتور شده و در نتیجه برق تولید می شود.



نیروگاه زمین گرمایی با چرخه دو مداره(باینری)



در این نوع نیروگاه ها نیاز به مخزن جداکننده در تجهیزات نیروگاه وجود ندارد زیراآب گرم استخراج شده وارد مبدل حرارتی شده و حرارت خود را به سیال عامل دیگری که معمولاً ایزوپنتان می باشد و نقطه جوش پایینتری نسبت به آب دارد منتقل میکند. در این فرآیند ایزوپنتان به بخار تبدیل شده و به توربین منتقل می شود که در اینجا توربین و ژنراتور طبق توضیحات فوق می توانند برق تولید کنند.


از کاربردهای مستقیم انرژی زمین گرمایی میتوان به مواردی همچون احداث مراکز آب درمانی و تفریحی-توریستی ، گرمایش انواع گلخانه، احداث مراکز پرورش آبزیان و طیور، پیش گیری از یخ زدگی معابر در فصل سرما، تامین گرمایش و سرمایش ساختمانها توسط پمپهای حرارتی زمین گرمایی اشاره نمود.




4- فن آوری هیدروژن، پیل سوختی و زیست توده


مصرف گسترده و کلان انرژی حاصل از سوختهای فسیلی اگرچه رشد سریع اقتصادی جوامع پیشرفته صنعتی را به همراه داشته است اما بواسطه انتشار مواد آلاینده حاصل از احتراق و افزایش دی اکسید کربن در جو و پیامدهای آن، جهان را با تغییرات روز افزونی آماده ساخته است که افزایش دمای زمین، تغییرات آب و هوایی، بالا آمدن سطح آب دریاها و در نهایت تشدید منازعات بین المللی از جمله این پیامدها محسوب می شوند. از سوی دیگر اتمام قریب الوقوع منابع فسیلی و پیش بینی افزایش قیمتها بیش از پیش بر اهمیت و لزوم جایگزینی سیستم انرژی فعلی اهمیت دارد.
در سال 1997 میلادی کنوانسیون تغییرات آب و هوایی با هدف تثبیت غلظت گازهای گلخانه ای در اتمسفر، پروتکل کیوتو را مطرح نمود که به موجب این پروتکل کشورهای صنعتی ملزم به کاهش انتشار گازهای گلخانه ای شده اند و هدف اصلی از این کنوانسیون دستیابی به تثبیت غلظت گازهای گلخانه ای در اتمسفر تا سطحی است که مانع تداخل خطرناک فعالیتهای بشری با سیستم آب و هوایی گردد و چنین سطحی در چهارچوب زمانی مناسب قابل اجرا خواهد بود تا اکوسیستمها بطور طبیعی خود را با تغیییر آب و هوایی تطبیق دهند و اطمینان حاصل شود که امنیت غذایی تهدید نمی شود و توسعه اقتصادی بطور پایدار ایجاد می گردد. از سوی دیگر مجموعه انرژیهای تجدید پذیر روز به روز سهم بیشتری را در سیستم تامین انرژی جهان بعهده می گیرد؛ لذا در برنامه ها و سیاستهای بین المللی، نقش مهمی به منابع تجدید پذیر انرژی محول گردیده است.

alt
اما سازگار نمودن این منابع با سیستم فعلی مصرف انرژی جهانی هنوز با مشکلاتی همراه است که بررسی و حل آنها حجم وسیعی از تحقیقات علمی جهان را در دهه های اخیر به خود اختصاص داده است.


تقریباً همه منابع انرژی تجدید پذیر بصورت تناوبی در دسترس هستند و بخودی خود قابل حمل یا ذخیره سازی نیستند و به همین دلیل نمی توانند بصورت سوخت به ویژه در حمل و نقل مورد استفاده قرار گیرند.
سوختهای پاک دارای خواص فیزیکی و شیمیایی هستند که آنها را پاکتر از بنزین با ساختار و ترکیب فعلی در عمل احتراق می نمایند. این سوختها در حین احتراق مواد آلاینده کمتری تولید می کنند، در ضمن استفاده از این سوختها شدت افزایش و انباشته شدن دی اکسید کربن که موجب گرم شدن زمین می گردد را نیز کاهش می دهد. هیدروژن بعنوان یک سوخت پاک می تواند جایگزین مناسبی برای سایر سوختهای متداول گردد و در آینده بعنوان یک حامل انرژی مطرح گردد. فراوانی سهولت تولید از آب، مصرف تقریباً منحصر بفرد و سودمندی زیست محیطی ذاتی هیدروژن از جمله ویژگیهایی است که آنرا در مقایسه با سایر گزینه های مطرح سوختی متمایز می کند. هیدروژن را می توان با استفاده از انواع منابع انرژی اولیه تولید کرد و در تمام موارد و کاربردهای سوختهای فسیلی مورد استفاده قرار داد. هیدروژن به ویژه منابع تجدید پذیر انرژی را تکمیل می کند و آنها را در هر محل و هر زمان، بصورت مناسبی در دسترس قرار داده و در اختیار مصرف کننده می گذارد. سیستم انرژی هیدروژنی بدلیل استقلال از منابع اولیه انرژی، سیستمی دائمی، پایدار، فنا ناپذیر، فراگیر و تجدید پذیر می باشد. از اینرو پیش بینی می شود که در آینده ای نه چندان دور، تولید و مصرف هیدروژن به عنوان حامل انرژی به سراسر اقتصاد جهانی سرایت کرده و اقتصاد هیدروژن تثبیت شود.


معرفی سوختهای جایگزین و مطالعه در خصوص امکان استفاده و بهره برداری از آنها با توجه به ملاحظات فنی-اقتصادی و منابع گسترده موجود در ایران، همچنین بدلیل روند رو به رشد مصرف سوختهای مایع هیدروکربوری در کشور که هر ساله موجب ضرر و زیان هنگفت به بودجه عمومی و محیط زیست کشور می شود، از اهمیت قابل توجهی برخوردار گردیده است.

 

 

حال پس از معرفی کلی به معرفی چندگونه مختلف انرژی نیز اشاره می نماییم  :

 

انرژی بی پایان خورشیدی :

خورشیدمنبع عظیم انرژی بلکه سرآغاز حیات و منشاء تمام انرژیهای دیگر است. در حدود ۶۰۰۰ میلیون سال از تولد این گوی آتشین می‌گذرد و در هر ثانیه ۲/۴ میلیون تن از جرمخورشید به انرژی تبدیل می‌شود. با توجه به وزن خورشید که حدود ۳۳۳ هزار برابر وزن زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵ میلیارد سال آینده به حساب آورد. خورشید از گازهایی نظیر هیدروژن(۸/۸۶ درصد) هلیوم (۳ درصد) و ۶۳ عنصر دیگر که مهم‌ترین آنها اکسیژن، کربن، نئون و نیتروژن است تشکیل شده‌است. میزان دما در مرکز خورشید حدود ۱۰ تا ۱۴ میلیون درجه سانتیگراد می‌باشد که از سطح آن با حرارتی نزدیک به ۵۶۰۰ درجه و به صورت امواج الکترو مغناطیسی در فضا منتشر می‌شود. زمین در فاصله ۱۵۰ میلیون کیلومتری خورشید واقع است و ۸ دقیقه و ۱۸ ثانیه طول می‌کشد تا نور خورشید به زمین برسد. بنابراین سهم زمین در دریافت انرژی از خورشید میزان کمی از کل انرژی تابشی آن می‌باشد. حتی سوختهای فسیلی ذخیره شده در زمین، انرژیهای باد ، آبشار ، امواج دریاها و بسیاری موارد دیگر از جمله نتایج همین انرژی دریافتی زمین از خورشید می‌باشد. انرژی خورشید به طور مستقیم یا غیر مستقیم می‌تواند دیگر اشکال انرژی تبدیل شود ، همانند گرما و الکتریسیته . موانع اصلی استفاده از انرژی خورشیدی شامل متغیر و متناوب بودن میزان انرژی و توزیع بسیار وسیع آن است.

انرژی خورشید برای حرارت آب ، استفاده دینامیکی ، حرارت فضایی ساختمانها ، خشک کردن تولیدات کشاورزی و تولید انرژی الکتریسیته مورد استفاده قرار می‌گیرد . در سال ۱۸۳۰ ستاره شناس انگلیسی به نام جان هرشل John Herschelیک جعبه جمع آوری خورشیدی را برای پختن غذا در طول یک سفر در افریقا استفاده کرد . کاربردهای الکتریکی فتوو لتایک‌ها را آزمایش می‌کنند یک فرایند که توسط آن انرژی نور خورشید به طور مستقیم به الکتریسیته تبدیل می‌شود . الکتریسیته می‌تواند به طور مستقیم از انرژی خورشید تولید شود و ابزارهای فتوولتایک استفاده کند یا به طور غیر مستقیم از ژنراتورهای بخار ذخایر حرارتی خورشیدی را برای گرما بخشیدن به یک سیال کاربردی مورد استفاده قرار می‌دهند .

 

انرژی فتو ولتایک :

انرژی فتو ولتایک تبدیل نور خورشید به الکتریسیته از طريق یک سلول فتو ولتاتیک (pvs) می‌باشد، که بطور معمول یک سلول خورشیدی نامیده می‌شود. سلول خورشیدی یک ابزار غیر مکانیکی است که معمولاً از آلیاز سیلیکون ساخته شده‌است. نور خورشید از فوتونها یا ذرات انرزی خورشیدی ساخته شده‌است. این فوتونها مقادیر متغیر انرژی را شامل می‌شوند مشابه طول موجهای متفاوت طيفهای نوری هستند . وقتی فوتونها به یک سلول فتو ولتاتیک بر خورد می‌کند، ممکن است منعکس شوند ،مستقیم از میان آن عبور کنند ،یا جذب شوند. فقط فوتونهای جذب شده انرژی را برای تولید الکتریسیته فراهم می‌کنند .وقتی که نور خورشید کافی یا انرژی توسط جسم نیمه رسانا جذب شود ،الکترون از اتم‌های جسم جابجا می‌شوند . رفتار خاصی سطح جسم در طول ساختن باعث می‌شود سطح جلویی سلول که برای الکترون‌های آزاد بیشتر پذیرش یابد .بنا براین الکترون‌ها بطور طبیعی به سطح مهاجرت می‌کنند . زمانی که الکترون‌ها موقعیت nرا ترک می‌کنند و سوراخ‌هایی شکل می‌گیرد .تعداد الکترونها زیاد است ،هر کدام یک بار منفی را حمل می‌کنند و به طرف جلو سطح سلول می‌روند ،در نتیجه عدم توازون بار بین سلولهای جلویی وسطوح عقبی یک پتانسیل ولتاژ .شبیه قطب‌های مثبت ومنفی یک باطری ایجاد می‌شود. وقتی که دو سطح از میان یک راه داخلی مرتبط می‌شود ،الکتریسیته جریان می‌یابد . سلول فتو ولتاتیک قاعده بلوک ساختمان یک سیستم pvاست. سلولهای انفرادی می‌توانند در اندازه‌هایی از حدود cm ۱ تا cm۱۰ از این سو به آن سو متغیر می‌شود . با این وجود ،توان ۱یا ۲ وات تولید می‌کند ،که انرژی کافی برای بیشتر کار بردها نیست.برای اینکه بازده انرژی را افزایش دهیم ،سلولها بطور الکتریکی به داخل هوای بسته یک مدول سخت مرتبط می‌شود . مدولها می‌توانند بیشتر برای شکل گیری یک آرایش مرتبط شوند. اصطلاح آرایش به کل صفحه انرژی اشاره می‌کند ،اگر چه آن از یک یا چند هزار مدول ساخته شدهباشد ،آن تعداد مدولها ی مورد نیاز می‌توانند بهم مرتبط شوند برای اینکه اندازه آرایش مورد نیاز (تولید انرژی) را تشکیل دهند. اجرای یک آرایش فتو ولتاتیک به انرژی خورشید وابسته‌است . شرایط آب وهوایی (همانند ابر و مه )تاثیر مهمی روی انرزی خورشیدی دریافت شده توسط یک آرایش pvو در عوض ،اجرایی آن دارد .بیشتر تکنولوژی مدول‌های فتو ولتاتیک در حدود ۱۰ درصد موثر هستند در تبدیل انرژیخورشید با تحقیق بیشتر مرتبط شوند برای اینکه این کار را به ۲۰ درصدافزایش دهند. سلولهای pvکه در سال ۱۹۵۴ توسط تحقیقات تلفنی بل bellکشف شد حساسیت یک آب سیلیکونی حاضر به خورشید را به طور خاصی آزمایش کرد .ابتدا در گذشته در دهه ۱۹۵۰،pvsبرای تامین انرژی قمرهای فضا در یک مورد استفاده قرار گرفتند. موفقیت pvsدر فضا کار بردهای تجاری برای تکنو لوژی pvsتولید کرد .ساده‌ترین سیستم‌های فتو ولتاتیک انرژی تعداد زیادی از ماشین حساب‌های کوچک و ساعتهای مچی که روزانه مورد استفاده قرار می گیرد را تأمین می کند. بیشتر سیستم‌های پیچیده الکتریسیته را برای پمپاژ آب ،انرژی ابزارهای ارتباطی ،وحتی فراهم کردن الکتریسیته برای خانه هایمان فراهم می‌کنند . تبدیل فتو ولتاتیک به چندین دلیل مفید است .تبدیل نور خورشیدبه الکتریسیته مستقیم است ،بنابراین سیستم‌های تولید کننده مکانیکی به حجم زیادی لازم نیستند .خصوصیت مدولی انرژی فتو ولتاتیک اجازه می‌دهد به طور سریع آرایش‌ها در هر اندازه مورد نیاز یا اجازه داده شده نصب شوند .همچنین، تاثیر محیطی یک سیستم فتو ولتاتیک حد اقل است ،آب را برای سیستم نیاز ندارد پختن و تولید محصول فرعی نیست .سلولهای فتوولتاتیک ،همانند باتریها ،جریان مستقیم (dc)را تولید می‌کنند که به طور عمومی برای برای راههای کوچکی مورد استفاده‌است (ابزار الکترونیک).وقتی که جریان مستقیم از سلولهای فتوولتاتیک برای کاربردهای تجاری یا لحیم کردن کار بردهای الکتریکی استفاده می‌شود . شبکه‌های الکتریکی بایستی به جریان متناوب (AC)برای استفاده تبدیل کننده‌ها تبدیل شوند،  Inverterها ابزارهایی هستند که جریان مستقیم را به جریان متناوب تبدیل می‌کنند. به طور تاریخی PVSدر جاهای دور برای تولید الکتریسیته بکار گرفته شده‌است. با این وجود یک بازار برای تولید از PVSرا توزیع کنند ممکن است با بی نظمی قیمتهای تبدیل و توزیع همزمان با بی نظمی الکتریکی توسعه داده شود . جایگزین ژنراتوهای کوچک مقیاس عددی در تغذیه کنندهای الکتریکی می‌توانند اقتصاد واعتبار سیستم توزیع را بهبود بخشد.

 

تاریخچه :

شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان ماقبل تاریخ باز می‌گردد. شاید به دوران سفالگری، در آن هنگام روحانیون معابد به کمک جامهای بزرگ طلائی صیقل داده شده و اشعه خورشید، آتشدانهای محرابها را روشن می‌کردند. یکی از فراعنه مصر معبدی ساخته بود که با طلوع خورشید درب آن باز و با غروب خورشید درب بسته می‌شد. ولی مهم‌ترین روایتی که درباره استفاده از خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم می‌باشد که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته‌است اشعه خورشید را از راه دور روی کشتیهای رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده‌است. در ایران نیز معماری سنتی ایرانیان باستان نشان دهنده توجه خاص آنان در استفاده صحیح و مؤثر از انرژی خورشید در زمان‌های قدیم بوده‌است.با وجود آنکه انرژی خورشید و مزایای آن در قرون گذشته به خوبی شناخته شده بود ولی بالا بودن هزینه اولیه چنین سیستمهایی از یک طرف و عرضه نفت و گاز ارزان از طرف دیگر سد راه پیشرفت این سیستمها شده بود تا اینکه افزایش قیمت نفت در سال ۱۹۷۳ باعث شد که کشورهای پیشرفته صنعتی مجبور شدند به مسئله تولید انرژی از راههای دیگر (غیر از استفاده سوختهای فسیلی) توجه جدی‌تری نمایند.

 

کاربردهای انرژی خورشید :

 

در عصر حاضر از انرژی خورشیدی توسط سیستم‌های مختلف استفاده می‌شود که عبارت‌اند از:

  1. استفاده از انرژی حرارتی خورشید برای مصارف خانگی، صنعتی و نیروگاهی.
  2. تبدیل مستقیم پرتوهای خورشید به الکتریسیته بوسیله تجهیزاتی به نام فتوولتائیک.

استفاده از انرژی حرارتی خورشید :

این بخش از کاربردهای انرژی خورشید شامل دو گروه نیروگاهی و غیر نیروگاهی می‌باشد.

 

کاربردهای نیروگاهی :

 

تأسیساتی که با استفاده از آنها انرژی جذب شده حرارتی خورشید به الکتریسیته تبدیل می‌شود نیروگاه حرارتی خورشیدی نامیده می‌شود این تأسیسات بر اساس انواع متمرکز کننده‌های موجود و بر حسب اشکال هندسی متمرکز کننده‌ها به سه دسته تقسیم می‌شوند:

  • نیروگاههایی که گیرنده آنها آینه‌های سهموی ناودانی هستند
  • نیروگاه‌هایی که گیرنده آنها در یک برج قرار دارد و نور خورشید توسط آینه‌های بزرگی به نام هلیوستات به آن منعکس می‌شود. (دریافت کننده مرکزی)
  • نیروگاه‌هایی که گیرنده آنها بشقابی سهموی (دیش) می‌باشد

قبل از توضیح در خصوص نیروگاه خورشیدی بهتر است شرح مختصری از نحوه کارکرد نیروگاه‌های تولید الکتریسیته داده شود. بهتر است بدانیم در هر نیروگاهی اعم از نیروگاههای آبی، نیروگاههای بخاری و نیروگاههای گازی برای تولید برق از ژنراتورهای الکتریکی استفاده می‌شود که با چرخیدن این ژنراتورها برق تولید می‌شود. این ژنراتورهای الکتریکی انرژی دورانی خود را از دستگاهی بنام توربین تأمین می‌کنند. بدین ترتیب می‌توان گفت که ژنراتورها انرژی جنبشی را به انرژی الکتریکی تبدیل می‌کنند. تأمین کننده انرژی جنبشی ژنراتورها، توربین‌ها هستند توربینها انواع مختلف دارند در نیروگاههای بخاری توربینهایی وجود دارند که بخار با فشار و دمای بسیار بالا وارد آنها شده و موجب به گردش در آمدن پره‌های توربین می‌گردد. در نیروگاه‌های آبی که روی سدها نصب می‌شوند انرژی پتانسیل موجود در آب موجب به گردش در آمدن پره‌های توربین می‌شود.بدین ترتیب می‌توان گفت در نیروگاههای آبی انرژی پتانسیل آب به انرژی جنبشی و سپس به الکتریکی تبدیل می‌شود، در نیروگاههای حرارتی بر اثر سوختن سوختهای فسیلی مانند مازوت، آب موجود در سیستم بسته نیروگاه داخل دیگ بخار (بویلر) به بخار تبدیل می‌شود و بدین ترتیب انرژی حرارتی به جنبشی و سپس به الکتریکی تبدیل می‌شود در نیروگاههای گازی توربینهایی وجود دارد که بطور مستقیم بر اثر سوختن گاز به حرکت درآمده و ژنراتور را می‌گرداند و انرژی حرارتی به جنبشی و سپس به الکتریکی تبدیل می‌شود. و اما در نیروگاههای حرارتی خورشیدی وظیفه اصلی بخش‌های خورشیدی تولید بخار مورد نیاز برای تغذیه توربینها است یا به عبارت دیگر می‌توان گفت که این نوع نیروگاهها شامل دو قسمت هستند:

  • سیستم خورشیدی که پرتوهای خورشید را جذب کرده و با استفاده از حرارت جذب شده تولید بخار می‌نماید.
  • سیستمی موسوم به سیستم سنتی که همانند دیگر نیروگاههای حرارتی بخار تولید شده را توسط توربین و ژنراتور به الکتریسیته تبدیل می‌کند.

 

نیروگاههای حرارتی خورشید از نوع سهموی خطی :

 

در این نیروگاهها، از منعکس کننده‌هایی که به صورت سهموی خطی می‌باشند جهت تمرکز پرتوهای خورشید در خط کانونی آنها استفاده می‌شود و گیرنده به صورت لوله‌ای در خط کانونی منعکس کننده‌ها قرار دارد. در داخل این لوله روغن مخصوصی در جریان است که بر اثر حرارت پرتوهای خورشید گرم و داغ می‌گردد.

روغن داغ از مبدل حرارتی عبور کرده و آب را به بخار به مدارهای مرسوم در نیروگاههای حرارتی انتقال داده می‌شود تا به کمک توربین بخار و ژنراتور به توان الکتریکی تبدیل گردد. برای بهره‌گیری بیشتر و افزایش بازدهی لوله دریافت کننده سطح آن را با اکسید فلزی که ضریب بالایی دارد پوشش می‌دهند و همچنین در محیط اطراف آن لوله شیشه‌ای به صورت لفاف پوشیده می‌شود تا از تلفات گرمایی و افت تشعشعی جلوگیری گردد و نیز از لوله دریافت کننده محافظت بعمل آید. ضمناً بین این دو لوله خلاء بوجود می‌آوردند برای آنکه پرتوهای تابشی خورشید در تمام طول روز به صورت مستقیم به لوله دریافت کننده برسد. در این نیروگاهها یک سیستم ردیاب خورشید نیز وجود دارد که بوسیله آن آینه‌های شلجمی دائماً خورشید را دنبال می‌کنند و پرتوهای آن را روی لوله دریافت کننده متمرکز می‌نمایند. تغییرات تابش خورشید در این نیروگاهها توسط منبع ذخیره و گرمکن سوخت فسیلی جبران می‌شوند. در چند کشور نظیر ایالات متحده آمریکا –اسپانیا –مصر –مکزیک –هند و مراکش از نیروگاه‌های سهموی خطی استفاده شده‌است که این نیروگاهها یا در مرحله ساخت و یا در مرحله بهره‌برداری قرار دارند. در ایران نیز تحقیقات و مطالعاتی در زمینه این نیروگاهها انجام شده و پروژه یک نیروگاه تحقیقاتی با ظرفیت ۳۵۰ کیلووات توسط سازمان انرژیهای نو ایران در شیراز در حال انجام می‌باشد و انتظار می‌رود تا پایان سال ۸۳ به بهره‌برداری برسد. کلیه مراحل مطالعاتی، طراحی و ساخت این نیروگاه به طور کامل توسط مختصصین و مهندسان ایرانی انجام می‌پذیرد. بدیهی است که با افزایش ظرفیت فنی و علمی که در اثر اجرای پروژه نیروگاه خورشیدی شیراز عابد محققین مجرب ایرانی می‌شود ایران در زمره محدود کشورهای سازنده نیروگاه‌های خورشید از نو ع متمرکز کننده‌های سهموی خطی قرار خواهند گرفت.

 

نیروگاههای حرارتی از نوع دریافت کننده مرکزی :

 

در این نیروگاه‌ها پرتوهای خورشیدی توسط مزرعه‌ای متشکل از تعداد زیادی آینه منعکس کننده بنام هلیوستات بر روی یک دریافت کننده که در بالای برج نسبتاً بلندی استقرار یافته‌است متمرکز می‌گردد. در نتیجه روی محل تمرکز پرتوها انرژی گرمایی زیادی بدست می‌آید که این انرژی بوسیله سیال عامل که داخل دریافت کننده در حرکت است، جذب می‌شود و بوسیله مبدل حرارتی به سیستم آب و بخار مرسوم در نیروگاه‌های سنتی منتقل شده و بخار فوق گرم در فشار و دمای طراحی شده برای استفاده در توربین ژنراتور تولید می‌گردد. این سیال عامل در مبدلهای حرارتی در کنار آب قرار گرفته و موجب تبدیل آن به بخار با فشار و حرارت بالا می‌گردد. در برخی از سیستم‌ها سیال عامل آب است و مستقیماً در داخل دریافت کننده به بخار تبدیل می‌شود. برای استفاده دائمی از این نوع نیروگاه در زمانی که تابش خورشید وجود ندارد مثلاً ساعات ابری یا شبها از سیستم‌های ذخیره کننده حرارت و یا احیاناً از تجهیزات پشتیبانی که ممکن است از سوخت فسیلی استفاده کنند جهت ایجاد بخار برای تولید برق کمک گرفته می‌شود.مطالعات و تحقیقات در زمینه فناوری و سیستمهای این نیروگاه‌ها ادامه دارد و آزمایشگاهها و مؤسسات متعددی در سراسر دنیا در این زمینه فعالیت می‌کنند.مطالعات ساخت اولین نیروگاه خورشیدی ایران از نوع دریافت کننده مرکزی توسط سازمان انرژیهای نو ایران و با کمک شرکتهای مشاور و سازنده داخلی با ظرفیت یک مگاوات و سیال عامل آب و بخار در طالقان جریان دارد. کلیه مطالعات اولیه و پتانسیل سنجی و طراحی نیروگاه به انجام رسیده و یک نمونه هلیوستات نیز ساخته شده‌است.

 

نیروگاه‌های حرارتی از نوع بشقابی :

 

در این نیروگاهها از منعکس کننده‌هایی که به صورت شلجمی بشقابی می‌باشد جهت تمرکز نقطه‌ای پرتوهای خورشیدی استفاده می‌گردد و گیرنده‌هایی که در کانون شلجمی قرار می‌گیرند به کمک سیال جاری در آن انرژی گرمایی را جذب نموده و به کمک یک ماشین حرارتی و ژنراتور آن را به نوع مکانیکی و الکتریکی تبدیل می‌نماید.

 

 

دودکش‌های خورشیدی :

 

روش دیگر برای تولید الکتریسیته از انرژی خورشید استفاده از برج نیرو یا دودکش‌های خورشیدی می‌باشد در این سیستم از خاصیت دودکش‌ها استفاده می‌شود به این صورت که با استفاده از یک برج بلند به ارتفاع حدود ۲۰۰ متر و تعداد زیادی گرم خانه‌های خورشیدی که در اطراف آن است هوای گرمی که بوسیله انرژی خورشیدی در یک گرمخانه تولید می‌شود و به طرف دودکش یا برج که در مرکز گلخانه‌ها قرار دارد، هدایت می‌شود.

این هوای گرم بعلت ارتفاع زیاد برج با سرعت زیاد صعود کرده و با عث چرخیدن پروانه و ژنراتوری که در پایین برج نصب شده‌است می‌گردد و بوسیله این ژنراتور برق تولید می‌شود هم اکنون یک نمونه از این سیستم در ۱۶۰ کیلومتری جنوب مادرید احداث گردیده که ارتفاع برج آن به ۲۰۰ متر می‌رسد.

 

مزایای نیروگاههای خورشیدی :

 

نیروگاه‌های خورشیدی که انرژی خورشید را به برق تبدیل می‌کنند امید است در آینده با مزایای قاطعی که در برابر نیروگاه‌های فسیلی و اتمی دارند به خصوص اینکه سازگار با محیط زیست می‌باشند، مشکل برق بخصوص در دوران اتمام ذخائر نفت و گاز را حل نمایند. تأسیس و بکارگیری نیروگاه‌های خورشیدی آینده‌ای پر ثمر و زمینه‌ای گسترده را برای کمک به خودکفایی و قطع وابستگی کشور به صادرات نفت فراهم خواهد کرد. اکنون شایسته‌است که به ذکر چند مورد از مزایای این نیروگاه‌ها بپردازیم.

 

الف) تولید برق بدون مصرف سوخت :

نیروگاه‌های خورشیدی نیاز به سوخت ندارند و برخلاف نیروگاه‌های فسیلی که قیمت برق تولیدی آنها تابع قیمت نفت بوده و همیشه در حال تغییر می‌باشد. در نیروگاه‌های خورشیدی این نوسان وجود نداشته و می‌توان بهای برق مصرفی را برای مدت طولانی ثابت نگهداشت.

ب) عدم احتیاج به آب زیاد :

نیروگاه‌های خورشیدی بخصوص دودکشهای خورشیدی با هوای گرم احتیاج به آب ندارند لذا برای مناطق خشک مثل ایران بسیار حائز اهمیت می‌باشند. (نیروگاه‌های حرارتی سنتی هنگام فعالیت نیاز به آب مصرفی زیادی دارند).

پ) عدم آلودگی محیط زیست :

نیروگاه‌های خورشیدی ضمن تولید برق هیچ‌گونه آلودگی در هوا ندارند و مواد سمّی و مضر تولید نمی‌کنند در صورتی که نیروگاه‌های فسیلی هوا و محیط اطراف خود را با مصرف نفت ، گاز و یا زغال سنگ آلوده می‌کنند. نیروگاه‌های اتمی با تولید زباله‌های هسته‌ای خود که بسیار خطرناک و رادیواکتیو هستند محیط زندگی را آلوده می‌کنند و مشکلات عظیمی را برای ساکنین کره زمین به وجود می‌آورند.

ت) امکان تأمین شبکه‌های کوچک و ناحیه‌ای :

نیروگاه‌های خورشیدی می‌توانند با تولید برق به شبکه سراسری برق نیرو برسانند و در عین امکان تأمین شبکه‌های کوچک ناحیه‌ای، احتیاج به تأسیس خطوط فشار قوی طولانی جهت انتقال برق ندارند و نیاز به هزینه زیاد احداث شبکه‌های انتقال نمی‌باشد.

ث) استهلاک کم و عمر زیاد :

نیروگاه‌های خورشیدی بدلایل فنی و نداشتن استهلاک زیاد دارای عمر طولانی می‌باشند در حالی که عمر نیروگاه‌های فسیلی بین ۱۵ تا ۳۰ سال محاسبه شده‌است.

ج) عدم احتیاج به متخصص :

نیروگاه‌های خورشیدی احتیاج به متخصص عالی ندارند و می‌توان آنها را بطور اتوماتیک بکار انداخت، در صورتی که در نیروگاه‌های اتمی وجود متخصصین در سطح عالی ضروری بوده و این دستگاهها احتیاج به مراقبتهای دائمی و ویژه دارند.

 

کاربردهای غیر نیروگاهی :

 

کابردهای غیر نیروگاهی از انرژی حرارتی خورشید شامل موارد متعددی می‌باشد که اهم آنها عبارت‌اند از: آبگرمکن و حمام خورشیدی –سرمایش و گرمایش خورشیدی –آب شیرین کن خورشیدی –خشک کن خورشیدی –اجاق خورشیدی –کوره‌های خورشیدی و خانه‌های خورشیدی.

 

الف –آبگرمکن‌های خورشیدی و حمام خورشیدی :

تولید آب گرم مصرفی ساختمانها اقتصادی‌ترین روشهای استفاده از انرژی خورشیدی است می‌توان از انرژی حرارتی خورشید جهت تهیه آب گرم بهداشتی در منازل و اماکن عمومی به خصوص در مکانهایی که مشکل سوخت رسانی وجود دارد استفاده کرد. چنانچه ظرفیت این سیستمها افزایش یابد می‌توان از آنها در حمامهای خورشیدی نیز استفاده نمود. تاکنون با توجه به موقعیت جغرافیایی ایران تعداد زیادی آب گرمکن خورشیدی و چندین دستگاه حمام خورشیدی در نقاط مختلف کشور از جمله استان‌های خراسان –سیستان و بلوچستان و یزد نصب و راه اندازی شده‌است.

ب –گرمایش و سرمایش ساختمان و تهویه مطبوع خورشیدی :

"اولین خانه خورشیدی در سال ۱۹۳۹ساخته شد که در آن از مخزن گرمای فصلی برای بکارگیری گرمای آن در طول سال استفاده شده‌است."

گرمایش و سرمایش ساختمانها با استفاده از انرژی خورشید، ایده تازه‌ای بود که در سالهای ۱۹۳۰ مطرح شد و در کمتر از یک دهه به پیشرفتهای قابل توجهی رسید. با افزودن سیستمی معروف به سیستم تبرید جذبی به سیستم‌های خورشیدی می‌توان علاوه بر آب گرم مصرفی و گرمایش از این سیستم‌ها در فصول گرما برای سرمایش ساختمان نیز استفاده کرد.

پ –آب شیرین کن خورشیدی :

هنگامی که حرارت دریافت شده از خورشید با درجه حرارت کم روی آب شور اثر کند تنها آب تبخیر شده و املاح باقی می‌ماند.

سپس با استفاده از روشهای مختلف می‌توان آب تبخیر شده را تنظیم کرده و به این ترتیب آب شیرین تهیه کرد. با این روش می‌توان آب بهداشتی مورد نیاز در نقاطی که دسترسی به آب شیرین ندارند مانند جزایر را تأمین کرد.

آب شیرین خورشیدی در دو اندازه خانگی و صنعتی ساخته می‌شوند. در نوع صنعتی با حجم بالا می‌توان برای استفاده شهرها آب شیرین تولید کرد.

ت –خشک کن خورشیدی :

خشک کردن مواد غذایی برای نگهداری آنها از زمانهای بسیار قدیم مرسوم بوده و انسان‌های نخستین خشک کردن را یک هنر می‌دانستند.

خشک کردن عبارت است از گرفتن قسمتی از آب موجود در مواد غذایی و سایر محصولات که باعث افزایش عمر انباری محصول و جلوگیری از رشد باکتریها می‌باشد. در خشک کن‌های خورشیدی بطور مستقیم و یا غیر مستقیم از انرژی خورشیدی جهت خشک نمودن مواد استفاده می‌شود و هوا نیز به صورت طبیعی یا اجباری جریان یافته و باعث تسریع عمل خشک شدن محصول می‌گردد. خشک کن‌های خورشیدی در اندازه‌ها و طرحهای مختلف و برای محصولات و مصارف گوناگون طراحی و ساخته می‌شوند.

ث –اجاقهای خورشیدی :

دستگاههای خوراک پز خورشیدی اولین بار بوسیله شخصی بنام نیکلاس ساخته شد. اجاق او شامل یک جعبه عایق بندی شده با صفحه سیاهرنگی بود که قطعات شیشه‌ای درپوش آنرا تشکیل می‌داد اشعه خورشید با عبور از میان این شیشه‌ها وارد جعبه شده و بوسیله سطح سیاه جذب می‌شد سپس درجه حرارت داخل جعبه را به ۸۸ درجه افزایش می‌داد. اصول کار اجاق خورشیدی جمع آوری پرتوهای مستقیم خورشید در یک نقطه کانونی و افزایش دما در آن نقطه می‌باشد. امروزه طرحهای متنوعی از این سیستم‌ها وجود دارد که این طرحها در مکانهای مختلفی از جمله آفریقای جنوبی آزمایش شده و به نتایج خوبی نیز رسیده‌اند. استفاده از این اجاقها به ویژه در مناطق شرقی کشور ایران که با مشکل کمبود سوخت مواجه می‌باشند بسیار مفید خواهد بود.

ج –کوره خورشیدی :

در قرن هجدهم نوتورا اولین کوره خورشیدی را در فرانسه ساخت و بوسیله آن یک تل چوبی را در فاصله ۶۰ متری آتش زد.

بسمر پدر فولاد جهان نیز حرارت مورد نیاز کوره خود را از انرژی خورشیدی تأمین می‌کرد. متداولترین سیستم یک کوره خورشیدی متشکل از دو آینه یکی تخت و دیگری کروی می‌باشد. نور خورشید به آینه تخت رسیده و توسط این آینه به آینه کروی بازتابیده می‌شود. طبق قوانین اپتیک هر گاه دسته پرتوی موازی محور آینه با آن برخورد نماید در محل کانون متمرکز می‌شوند به این ترتیب انرژی حرارتی گسترده خورشید در یک نقطه جمع می‌شود که این نقطه به دماهای بالایی می‌رسد. امروزه پروژه‌های متعددی در زمینه کوره‌های خورشید در سراسر جهان در حال طراحی و اجراء می‌باشد.

چ –خانه‌های خورشیدی : ( sun homes)

ایرانیان باستان از انرژی خورشیدی برای کاهش مصرف چوب در گرم کردن خانه‌های خود در زمستان استفاده می‌کردند. آنان ساختمانها را به ترتیبی بنا می‌کردند که در زمستان نور خورشید به داخل اتاقهای نشیمن می‌تابید ولی در روزهای گرم تابستان فضای اتاق در سایه قرار داشت. در اغلب فرهنگ‌های دیگر دنیا نیز می‌توان نمونه‌هایی از این قبیل طرحها را مشاهده نمود. در سالهای بین دو جنگ جهانی در اروپا و ایالات متحده طرحهای فراوانی در زمینه خانه‌های خورشیدی مطرح و آزمایش شد. از آن زمان به بعد تحول خاصی در این زمینه صورت نگرفت. حدود چند سالی است که معماران بطور جدی ساخت خانه‌های خورشیدی را آغاز کرده‌اند و به دنبال تحول و پیشرفت این تکنولوژی به نتایج مفیدی نیز دست یافته‌اند مثلاً در ایالات متحده در سال ۱۸۹۰ به تنهایی حدود ۱۰ تا ۲۰ هزار خانه خورشیدی ساخته شده‌است. در این گونه خانه‌ها سعی می‌شود از انرژی خورشید برای روشنایی –تهیه آب گرم بهداشتی –سرمایش و گرمایش ساختمان استفاده شود و با بکار بردن مصالح ساختمانی مفید از اتلاف گرما و انرژی جلوگیری شود.

در ایران نیز پروژه ساخت اولین ساختمان خورشیدی واقع در ضلع شمالی دانشگاه علم و صنعت و به منظور مطالعه و پژوهش در خصوص بهینه سازی مصرف انرژی و امکان بررسی روشهای استفاده از انواع انرژیهای تجدیدپذیر به ویژه انرژی خورشیدی اجرا گردیده‌است.

سیستمهای فتوولتاییک:

به پدیده‌ای که در اثر تابش نور بدون استفاه از مکانیزم‌های محرک، الکتریسیته تولید کند پدیده فتوولتائیک و به هر سیستمی که از این پدیده‌ها استفاده کند سیستم فتوولتائیک گویند. سیستم‌های فتوولتائیک یکی از پر مصرف‌ترین کاربرد انرژی‌های نو می‌باشند و تاکنون سیستم‌های گوناگونی با ظرفیت‌های مختلف (۵/۰ وات تا چند مگاوات) در سراسر جهان نصب و راه اندازی شده‌است و با توجه به قابلیت اطمینان و عملکرد این سیستم‌ها هر روزه بر تعداد متقاضیان آنها افزوده می‌شود. از سری و موازی کردن سلولهای آفتابی می‌توان به جریان و ولتاژ قابل قبولی دست یافت. در نتیجه به یک مجموعه از سلولهای سری و موازی شده پنل (Panel) فتوولتائیک می‌گویند. امروزه اینگونه سلولها عموماً از ماده سیلیسیم تهیه می‌شود و سیلیسیم مورد نیاز از شن و ماسه تهیه می‌شود که در مناطق کویری کشور، به فراوانی یافت می‌گردد. بنابراین از نظر تأمین ماده اولیه این سلولها هیچگونه کمبودی در ایران وجود ندارد. سیستمهای فتوولتائیک را می‌توان بطور کلی به دو بخش اصلی تقسیم نمود که بطور خلاصه به توضیح آنها می‌پردازیم.

 

۱ –پنلهای خورشیدی:

این بخش در واقع مبدل انرژی تابشی خورشید به انرژی الکتریکی بدون واسطه مکانیکی می‌باشد. این بخش در واقع کلیه مشخصات سیستم را کنترل کرده وتوان ورودی پنلها را طبق طراحی انجام شده و نیاز مصرف کننده به بار یا باتری تزریق و کنترل می‌کند. لازم به ذکر است که در این بخش مشخصات و عناصر تشکیل دهنده با توجه به نیازهای بار الکتریکی و مصرف کننده و نیز شرایط آب و هوایی محلی تغییر می‌کند.

۲ –مصرف کننده یا بار الکتریکی:

با توجه به خروجی DCپنلهای فتوولتائیک، مصرف کننده می‌تواند دو نوع DCیا ACباشد، همچنین با آرایشهای مختلف پنلهای فتوولتائیک می‌توان نیاز مصرف کنندگان مختلف را با توانهای متفاوت تأمین نمود. با توجه به کاهش روز افزون ذخائر سوخت فسیلی و خطرات ناشی از بکارگیری نیروگاههای اتمی، گمان قوی وجود دارد که در آینده‌ای نه چندان دور سلولهای خورشیدی به انرژی برق به‌عنوان جایگزین مناسب و بی خطر برای سوختهای فسیلی و نیروگاههای اتمی توسط بشر بکار گرفته شود.

مصارف و کاربردهای فتوولتائیک :

  • مصارف فضانوردی و تأمین انرژی مورد نیاز ماهواره‌ها جهت ارسال پیام

روشنایی خورشیدی:

در حال حاضر روشنایی خورشیدی بالاترین میزان کاربرد سیستم‌های فتوولتائیک را در سراسر جهان دارد و سالانه دهها هزار نمونه از این سیستم در سراسر جهان نصب و راه اندازی می‌گردد، مانند برق جاده‌ها و تونلها بخصوص در مناطقی که به شبکه برق دسترسی ندارند، تأمین برق پاسگاههای مرزی که دور از شبکه برق هستند، تأمین برق مناطقی شکاربانی و مناطق حفاظت شده نظیر جزیره‌های دور افتاده که جنبه نظامی دارند.

  • سیستم تغذیه کننده یک واحد مسکونی:

انرژی مورد نیاز کلیه لوازم برقی منازل (شهری و روستایی) و مراکز تجاری را می‌توان با استفاده از پنلهای فتوولتائیک و سیستمهای ذخیره کننده و کنترل نسبتاً ساده، تأمین نمود.

  • سیستم پمپاژ خورشیدی:

سیستم پمپهای فتوولتائیک قابلیت استحصال آب از چاهها، قنوات، چشمه‌ها، رودخانه‌ها و ….. را جهت مصارف متنوعی دارا می‌باشد.

سیستم تغذیه کننده ایستگاههای مخابراتی و زلزله نگاری:

اغلب ایستگاههای مخابراتی و یا زلزله نگاری در مکانهای فاقد شبکه سراسری و سخت‌گذر و یا در محلی که احداث پست فشار قوی به فشار ضعیف و تأمین توان الکتریکی ایستگاه مذکور صرفه اقتصادی و حفاظت الکتریکی ندارد نصب شده‌اند.

  • ماشین حساب، ساعت، رادیو، ضبط صوت و وسایل بازی کودکانه یا هر نوع وسیله‌ای که تاکنون با باطری خشک کار می‌کرده‌است یکی دیگر از کاربردهای این سیستم می‌باشد.

مثلاً ژاپن در سال ۱۹۸۳ حدود ۳۰ میلیون ماشین حساب خورشیدی تولید کرده‌است که سلولهای خورشیدی بکار گرفته در آنها مساحتی حدود ۰۰۰/۲۰ متر مربع و توان الکتریکی معادل ۵۰۰ کیلووات داشته‌اند.

نیروگاههای فتوولتائیک:

هم‌زمان با استفاده از سیستم‌های فتوولتائیک در بخش انرژی الکتریکی مورد نیاز ساختمانها اطلاعات و تجربیات کافی جهت احداث واحدهای بزرگ‌تر حاصل گردید و همه اکنون در بسیاری از کشورهای جهان نیروگاه فتوولتائیک در واحدهای کوچک و بزرگ و به صورت اتصال به شبکه و یا مستقل از شبکه نصب و راه اندازی شده‌است ولی این تأسیسات دارای هزینه ساخت، راه اندازی و نگهداری بالایی می‌باشند که فعلاً مقرون به صرفه و اقتصادی نیست.

  • یخچالهای خورشیدی:

از یخچالهای خورشیدی جهت سرویس دهی و ارائه خدمات بهداشتی و تغذیه‌ای در مناطق دور افتاده و صعب العبور استفاده می‌گردد. عملکرد مناسب یخچالهای خورشیدی تا حدی بوده‌است که در طی ۵ سال گذشته بیش از ۱۰۰۰۰ یخچال خورشیدی برای کاربردهای بهداشتی و درمانی در سراسر آفریقا راه اندازی شده‌است.

  • سیستم تغذیه کننده پرتابل یا قابل حمل:

قابلیت حمل و نقل و سهولت در نصب و راه اندازی از جمله مزایای این سیستم‌ها می‌باشد بازده توان این سیستم‌ها از ۱۰۰ وات الی یک کیلو وات تعریف شده‌است. از جمله کاربردهای آن می‌توان به تأمین برق اضطراری در مواقع بروز حوادث غیر مترقبه، سیستم تغذیه کننده یک چادر عشایری و کمپ‌های جنگلی اشاره نمود.

 

 

انرژِی باد

 

این نوع توربین‌های سه پره از پرکاربردترین طراحی‌ها برای توربین‌های بادی هستند.

 

منظور از توان بادی تبدیل انرژی باد به نوعی مفید از انرژی مانند انرژی الکتریکی است که این کار به وسیله توربین‌های بادی صورت می‌گیرد. در آسیاب‌های بادی از انرژی باد مستقیماً برای خرد کردن دانه‌ها و یا پمپ کردن آب استفاده می‌شود. در انتهای سال ۲۰۰۶میزان ظرفیت تولیدی برق بادی در سراسر جهان برابر ۷۳٫۹ گیگاوات بود. گرچه این میزان چیزی در حدود یک درصد از کل انرژی الکتریکی تولیدی در جهان محسوب می‌شد اما در طول بازه زمانی بین سال‌های ۲۰۰۰ تا ۲۰۰۶ تقریباً چهار برابر شده‌است. در این میان کشورهای دانمارک با ۲۰ درصد، اسپانیاو پرتغال با ۹ درصد و آلمان با ۷ درصد از نظر درصد تولید برق بادی از کل تولید انرژی الکتریکی در جایگاه‌های نخست قرار دارند.

انرژی بادی در مقادیر زیاد در مزارع بادی تولید و به شبکه الکتریکی متصل می‌شود. از توربین‌ها در تعداد کم معمولاً فقط برای تامین برق در مناطق دور افتاده استفاده می‌شود.

اما از جمله دلایل تمایل کشورها برای افزایش ظرفیت تولید برق بادی مزایا بسیار زیاد این روش تولید انرژی الکتریکی است چراکه انرژی بادی فراوان، تجدیدپذیرو پاک است و همچنین در مقایسه با استفاده از انرژی سوخت‌های فسیلی میزان کمتری گاز گلخانه‌ای منتشر می‌کند.

تاریخچه :

قدیمی‌ترین روش استفاده از انرژی باد، به ایران باستان باز می‌گردد. برای نخستین بار، ایرانیان موفق شدند با استفاده از نیروی باد، دلو(دولاب) یا چرخ چاهرا به گردش درآورده و از چاه‌های آب خود، آب را به سطح مزارع برسانند.

انرژی باد :

 

باد:

منشا باد یک موضوع پیچیده‌است. از آنجاییکه زمین بطور نامساوی به وسیله نور خورشید گرم می‌شود بنابراین در قطب‌ها انرژی گرمایی کمتری نسبت به مناطق استوایی وجود دارد همچنین درخشکی‌ها تغییرات دما با سرعت بیشتری انجام می‌پذیرد و بنابراین خشکی‌ها زمین نسبت به دریاها زودتر گرم و زودتر سرد می‌شوند. این تفاوت دمای جهانی موجب به وجود آمدن یک سیستم جهانی تبادل حرارتی خواهد شد که از سطح زمین تا هوا کره، که مانند یک سقف مصنوعی عمل می‌کند، ادامه دارد. بیشتر انرژی که در حرکت باد وجود دارد را می‌توان در سطوح بالای جو پیدا کرد جایی که سرعت مداوم باد به بیش از ۱۶۰ کیلومتر در ساعت می‌رسد و سرانجام باد انرژی خود را در اثر اصطکاک با سطح زمین و جو از دست می‌دهد.

یک برآورد کلی اینگونه می‌گوید که ۷۲ تراوات (TW) انرژی باد بر روی زمین وجود دارد که پتانسیل تبدیل به انرژی الکتریکی را دارد و این مقدار قابل ترقی نیز هست.

توان پتانسیل توربین :

انرژی موجود در باد را می‌توان با عبور آن از داخل پره‌های و سپس انتقال گشتاور پره‌ها به روتور یک ژنراتور استخراج کرد. در این حالت میزان توان تبدیلی با تراکم باد, مساحت ناحیه جاروب شده توسط پره و مکعب سرعت باد بستگی دارد. به این ترتیب میزان توان قابل تبدیل در باد را می‌توان به این ترتیب به دست آورد: :

که در این فرمول Pتوان تبدیلی به وات، αضریب بهره‌وری (که به طراحی توربین وابسته‌است)، ρتراکم باد بر حسب کیلوگرم بر مترمکعب، rشعاع پره‌های توربین برحسب متر و vسرعت باد برحسب متر بر ثانیه‌است.

زمانی که توربین انرژی باد را می‌گیرد سرعت باد کم خواهد شد که این خود باعث جدا شدن باد می‌شود. آلبرت بتز (Albert Betz) فیزیکدان آلمانی در ۱۹۱۹ اثبات کرد که یک توربین حداکثر می‌تواند ۵۹ درصد از انرژی بادی را که در مسیر آن می‌وزد را استخراج کند و به این ترتیب αدر معادله بالا هرگز بیشتر از ۰٫۵۹ نخواهد شد.

از ترکیب این قانون با معادله بالا می‌توان اینگونه نتیجه گرفت:

 

نمودار میزان و پیشبینی استفاده از برق بادی در سال‌های 1997 تا 2010

  • حجم هوایی که از منطقه جاروب شده توسط پره‌ها عبور می‌کند به میزان سرعت باد و چگالی هوا وابسته‌است. برای مثال در روزی سرد با دمای ۱۵ درجه سانتی‌گراد (۵۹ درجه فارنهایت) در سطح دریا، چگالی هوا برابر ۱٫۲۲۵ کیلوگرم بر متر مکعب است. در این حالت عبور بادی با سرعت ۸ متر بر ثانیه در روتوری به شعاع ۱۰۰ متر تقریباً موجب عبور ۷۷٬۰۰۰ کیلوگرم باد در منطقه جاروب شده توسط پره‌ها خواهد شد.
  • انرژی جنبشی حجم مشخصی هوا به مجذور سرعت آن وابسته‌است و از آنجایی که حجم هوای عبور از توربین به صورت خطی با سرعت رابطه دارد، میزان توان قابل دسترسی در یک توربین با مکعب سرعت نسبت مستقیم دارد. مجموع توان در مثال بالا در توربینی با شعاع جاروب ۱۰۰ متر برابر ۲٫۵ مگاوات است که بر طبق قانون بتز بیشترین میزان انرژی استخراج شده از آن تقریباً برابر ۱٫۵ مگاوات خواهد بود.
  •  

توزیع سرعت باد :

میزان باد دائما تغییر می‌کند میزان متوسط مشخص شده برای یک منطقه خاص صرفاً نمی‌تواند میزان تولید توریبن بادی نصب شده در آن منطقه را مشخص کند. برای مشخص کردن فراوانی سرعت باد در یک منطقه معمولاً از یک ضریب توزیع در اطلاعات جمع‌آوری شده مربوط به منطقه استفاده می‌کنند. مناطق مختلف دارای مشخصه توزیع سرعت متفاوتی هستند. مدل رایلی (Rayleigh model) به طور دقیقی میزان ضریب توزیع سرعت در بسیاری مناطق را منعکس می‌کند.

از آنجاییکه بیشتر توان تولیدی در سرعت بالای باد تولید می‌شود, بیشتر انرژی تولیدی در بازه‌های زمانی کوتاه تولید می‌شود. بر طبق الگوی لی رنچ نیمی از انرژی تولیدی تنها در ۱۵٪از زمان کارکرد توربین تولید می‌شود و در نتیجه نیروگاه‌های بادی مانند نیروگاه‌های سوختی دارای تولید انرژی پایداری نیستند. تاسیساتی که از برق بادی استفاده می‌کنند باید از ژنراتورهای پشتیبانی برای مدتی که تولید انرژی در توربین بادی پایین است استفاده کنند.

 

ضریب ظرفیت :

تا زمانی که سرعت باد ثابت نباشد تولید سالیانه انرژی الکتریکی توسط نیروگاه بادی هرگز برابر حاصل ضرب توان تولیدی نامی در مجموع ساعت کار آن در یک سال نخواهد شد. نسبت میزان توان حقیقی تولید شده توسط نیروگاه و ماکزیمم ظرفیت تولیدی نیروگاه را ضریب ظرفیت می‌نامند. یک نیروگاه بادی نصب شده در یک محل مناسب در ساحل ضریب ظرفیتی سالیانه‌ای در حدود ۳۵٪دارد. برعکس نیروگاه‌های سوختی ضریب ظرفیت در یک نیروگاه بادی به شدت به خصوصیات ذاتی باد وابسته‌است. ضریب ظرفیت در انواع دیگر نیروگاه‌ها معمولاً به بهای سوخت و زمان مورد نیاز برای انجام عملیات تعمیر بستگی دارد. از آنجایی که نیروگاه‌های هسته‌ای دارایهزینه سوخت نسبتاً پایینی هستند بنابراین محدویت‌های مربوط به تامین سوخت این نیروگاه‌ها نسبتاً پایین است که این خود ضریب ظرفیت این نیروگاه‌ها را به حدود ۹۰٪می‌رساند. نیروگاه‌هایی که از توربین‌های گاز طبیعی برای تولید انرژی الکتریکی استفاده می‌کنند به علت پر هزینه بودن تامین سوخت معمولاً تنها در زمان اوج مصرف به تولید می‌پردازند. به همین دلیل ضریب ظرفیت این توربین‌ها پایین بوده و معمولاً بین ۵-۲۵٪می‌باشد.

بنا به یک تحقیق در دانشگاه استندورد که در نشریه کاربردی هواشناسی و اقلیم‌شناسی نیز به چاپ رسیده در صورت ساخت بیش از ده مزرعه بادی در مناطق مناسب و به طور پراکنده می‌توان تقریباً از ۳/۱ انرژی تولیدی آنها برای تغذیه مصرف کننده‌های دائمی استفاده کرد.

 

محدودیت‌های ادواری و نفوذ :

میزان انرژی الکتریکی تولیدی توسط نیروگاه‌های بادی می‌تواند به شدت به چهار مقیاس زمانی ساعت به ساعت, روزانه و فصلی وابسته باشد. این میزان به تحولات آب و هوایی سالیانه نیز وابسته‌است اما تغییرات در این مقیاس زیاد محسوس نیستند. از آنجایی که برای ایجاد ثبات در شبکه, میزان انرژی الکتریکی تامین شده و میزان مصرف باید در تعادل باشند از این جهت تغییرات دائم در میزان تولید این ضرورت را به وجود می‌آورد که از تعداد بیشتری نیروگاه بادی برای تولیدی متعادل‌تر در شبکه استفاده شود. از طرفی ادواری بودن طبیعی تولید انرژی باد موجب افزایش هزینه‌های تنظیم و راه اندازی می‌شود و (در سطوح بالا) ممکن است نیازمند اصول مدیریت تقاضای انرژی یا ذخیره‌سازی انرژی باشد.

از ذخیره‌سازی با استفاده از نیروگاه‌های آب تلمبه‌ای یا دیگر روش‌ها ذخیره سازی برق در شبکه می‌توانند برای به وجود آوردن تعادل در میزان تولید نیروگاه‌های بادی استفاده کرد اما در مقابل استفاده از این روش‌ها موجب افزایش ۲۵٪هزینه‌های دائم اجرای چنین طرح‌هایی می‌شوند. ذخیره‌سازی انرژی الکتریکی موجب به وجود آمدن تعادل بین دو بازه زمانی کم مصرف و پر مصرف خواهد شد و از این جهت میزان صرفه‌جویی عاید از ذخیره‌سازی انرژی هزینه‌های اجرای آن را جبران می‌کند. یکی دیگر از راهکارهای ایجاد تعادل در تولید و مصرف سازگار کردن میزان مصرف با میزان تولید با استفاده از ایجاد تعرفه‌های متفاوت زمانی برای مصرف‌کننده‌هاست.

 

پیش‌بینی پذیری :

با توجه به تغییرات باد قابلیت پیش‌بینی محدودی (ساعتی یا روزانه) برای خروجی نیروگاه‌های بادی وجود دارد. مانند دیگر منابع انرژی تولید باد نیز باید از قابلیت برنامه ریزی برخوردار باشد اما طبیعت باد این پدیده را ذاتا متغیر می‌کند. گرچه از روش‌هایی برای پیش‌بینی تولید توان این نیروگاه‌ها استفاده می‌شود اما در کل قابلیت پیش‌بینی پذیری این نیروگاه‌ها پایین است. این عیب این گونه نیروگاه‌ها معمولاً باستفاده از روش‌های ذخیره سازی انرژی مانند استفاده از نیروگاه‌های آب تلمبه‌ای تا حدودی بر طرف می‌شود.

جاگذاری توربین :

مزرعه بادی:

انتخاب مکان مناسب برای نصب نیروگاه بادی و جهت نصب توربین‌ها در محل از نکات حیاتی برای توسعه اقتصادی این گونه نیروگاه‌هاست. گذشته از دسترسی باد مناسب در محل مورد بحث, عوامل مهم دیگری مانند دسترسی به خطوط انتقال, قیمت زمین مورد استفاده, ملاحظات استفاده از زمین و مسائل زیست محیطی ساخت و بهره‌برداری نیز در انتخاب یک محل برای نصب نیروگاه‌ها موثر است. از این رو استفاده از نیروگاه‌های بادی در مناطق دور از ساحل ممکن است هزینه‌های مربوط به ساخت یا ضریب ظرفیت را با استفاده از کاهش هزینه‌های تولید برق جبران کنند.

 

بهره‌برداری از برق بادی :

 

ظرفیت بادی نصب شده (مگاوات )

ظرفیت بادی نصب شده (مگاوات )

رتبه

کشور

2005

2006

2007

2008

رتبه

کشور

2005

2006

2007

2008

۱

United States

۹٬۱۴۹

۱۱٬۶۰۳

۱۶٬۸۱۹

۲۵٬۱۷۰

۱۷

Austria

۸۱۹

۹۶۵

۹۸۲

۹۹۵

۲

Germany

۱۸٬۴۲۸

۲۰٬۶۲۲

۲۲٬۲۴۷

۲۳٬۹۰۳

۱۸

Greece

۵۷۳

۷۵۸

۸۷۳

۹۹۰

۳

Spain

۱۰٬۰۲۸

۱۱٬۶۳۰

۱۵٬۱۴۵

۱۶٬۷۴۰

۱۹

Poland

۸۳

۱۵۳

۲۷۶

۴۷۲

۴

China

۱٬۲۶۶

۲٬۵۹۹

۵۹۱۲

۱۲٬۲۱۰

۲۰

Turkey

۲۰

۶۵

۲۰۷

۴۳۳

۵

India

۴٬۴۳۰

۶٬۲۷۰

۷۸۵۰

۹٬۵۸۷

۲۱

Norway

۲۶۸

۳۲۵

۳۳۳

۴۲۸

۶

Italy

۱٬۷۱۸

۲٬۱۲۳

۲٬۷۲۶

۳٬۷۳۶

۲۲

Egypt

۱۴۵

۲۳۰

۳۱۰

۳۹۰

۷

France

۷۷۹

۱٬۵۸۹

۲٬۴۷۷

۳٬۴۲۶

۲۳

Belgium

۱۶۷

۱۹۴

۲۸۷

۳۸۴

۸

United Kingdom

۱٬۳۵۳

۱٬۹۶۳

۲٬۳۸۹

۳٬۲۸۸

۲۴

Taiwan

۱۰۴

۱۸۸

۲۸۰

۳۵۸

۹

Denmark

۳٬۱۳۲

۳٬۱۴۰

۳٬۱۲۹

۳٬۱۶۴

۲۵

Brazil

۲۹

۲۳۷

۲۴۷

۳۳۹

۱۰

Portugal

۱٬۰۲۲

۱٬۷۱۶

۲٬۱۳۰

۲٬۸۶۲

۲۶

New Zealand

۱۶۸

۱۷۱

۳۲۲

۳۲۵

۱۱

Canada

۶۸۳

۱٬۴۶۰

۱٬۸۴۶

۲٬۳۶۹

۲۷

South Korea

۱۱۹

۱۷۶

۱۹۲

۲۷۸

۱۲

Netherlands

۱٬۲۳۶

۱٬۵۷۱

۱٬۷۵۹

۲٬۲۳۷

۲۸

Bulgaria

۱۴

۳۶

۵۷

۱۵۸

۱۳

Japan

۱٬۰۴۰

۱٬۳۰۹

۱٬۵۲۸

۱٬۸۸۰

۲۹

Czech Republic

۳۰

۵۷

۱۱۶

۱۵۰

۱۴

Australia

۵۷۹

۸۱۷

۸۱۷

۱٬۴۹۴

۳۰

Finland

۸۲

۸۶

۱۱۰

۱۴۰

۱۵

Ireland

۴۹۵

۷۴۶

۸۰۵

۱٬۲۴۵

۳۱

Hungary

۱۸

۶۱

۶۵

۱۲۷

۱۶

Sweden

۵۰۹

۵۷۱

۸۳۱

۱٬۰۶۷

۳۲

Morocco

۶۴

۶۴

۱۲۵

۱۲۵

 

 

 

در جهان هزاران توربین بادی در حال بهره‌برداری وجود دارد که ظرفیت تولیدی آنها به ۷۳٫۹۰۴ مگاوات می‌رسد و در این میان اتحادیه اروپا۶۵٪از کل توان بادی جهان را تولید می‌کند. تولید برق بادی در میان دیگر روش‌های تولید انرژی الکتریکی دارای بیشتری شتاب رشد در قرن ۲۱ بوده‌است به طوری که تولید توان بادی جهان در بین سال‌های ۲۰۰۰ تا ۲۰۰۶ چهار برابر شده‌است. در دانمارک و اسپانیابرق بادی حدود ۱۰٪یا بیشتر ازکل تولید انرژی الکتریکی را تشکیل می‌دهد. گرچه ۸۱٪از توان بادی تولید شده در جهان به ایالات متحده و اتحادیه اروپا تعلق دارد اما سهم پنج کشور اول تولید کننده برق بادی از ۷۱٪در سال ۲۰۰۴ به ۵۵٪در سال ۲۰۰۵ کاهش یافته‌است. انجمن جهانی انرژی بادی پیش‌بینی کرده در سال ۲۰۱۰ ضرفیت تولیدی برق بادی به ۱۶۰ گیگاوات برسد. با توجه به میزان تولید کنونی ۷۳٫۹ مگاوات این رقم پیش‌بینی یک رشد ۲۱٪را در هر سال نشان می‌دهد. از جمله کشورهایی که سرمایه گذلری زیادی در این زمینه انجام داده‌اند می‌توان به آلمان, اسپانیا, ایالات متحده,هندو دانمارک  اشاره کرد. کشور دانمارک یکی از کشورهای برجسته در تولید تجهیزات و استفاده از توان بادی است. دولت دانمارک در دهه ۱۹۷۰ ملزم شد تا تولید انرژی الکتریکی از انرژی باد را به ۵۰٪کل تولید برق برساند و تا به امروز برق بادی ۲۰٪(بیشترین میزان تولید برق بادی از نظر درصد تولید) از کل تولید انرژی الکتریکی در این کشور را تشکیل می‌دهد؛ این کشور هچنین پنجمین تولید کننده بزرگ برق بادی محسوب می‌شود (در حالی که دانمارک از نظر میزان مصرف در جهان رتبه ۵۶ را دراست). آلمان و دانمارک دو کشور پیشتاز در زمینه صادرات توربین‌های بزرگ (۰٫۶۶ تا ۵ مگاوات) به حساب می‌آیند. آلمان یکی از کشورهای پیشتاز در زمینه تولید برق بادی بوده‌است به طوری که در سال ۲۰۰۶ این کشور ۲۸٪از کل توان بادی تولید شده در جهان (۷٫۳٪در آلمان) را به خود اختصاص داده‌است. این در حالی است که آلمان برنامه دارد تا سال ۲۰۱۰ ۱۲٫۵٪از کل توان تولیدی خود را از منابع تجدیدپذیر تامین نماید. کشور آلمان دارای حدود ۱۸۶۰۰ توربین بادی است که بیشتر آنها در شمال آلمان نصب شده‌اند که در این میان سه توربین از بزرگترین توربین‌های جهان نیز وجود دارند. در سال ۲۰۰۵ دولت اسپانیا قانونی را تصویب کرد که بر طبق آن نصب ۲۰۰۰۰ مگاوات ظرفیت بادی تا سال ۲۰۱۲ در برنامه دولت قرار گرفت. البته در سال ۲۰۰۶ یارانه‌ها و پشتیبانی دولت از ساخت این ظرفیت‌ها به ناگهان قطع شد. قابل ذکر است که در سال ۲۰۰۵ در هر دو کشور آلمان و اسپانیا تولید انرژی الکتریکی از راه استفاده از نیروگاه‌های بادی از تولید انرژی الکتریکی به وسیله نیروگاه‌های برق آبیبیشتر بود. در سال‌های اخیر ایالات متحده از هر کشور دیگری بیشتر توربین بادی به شبکه برق خود افزوده‌است. تولید برق بادی در ایالات متحده در بازه زمانی بین فوریه ۲۰۰۶ تا فوریه ۲۰۰۷ ۳۱٫۸٪رشد را نشان می‌دهد. ایالت تگزاسبا پیشی گرفتن از کالیفرنیااکنون بیشترین تولید برق بادی را دربین ایالت‌های مختلف این کشور دارد. تگزاسدر سال ۲۰۰۹ نزدیک به ۱۷٪برق خود را از باد بدست آورد ، و تگزاس اکنون بزرگترین مزرعه بادی جهان را با ۷۸۲ مگاوات ظرفیت در روستایی بنام راسکو در اختیار دارد.

 

برق بادی در مقیاس‌های کوچک :

تجهیزات تولید برق بادی در مقیاس کوچک (۱۰۰ کیلووات یا کمتر) معمولاً برای تغذیه منازل, زمین‌های کشاورزی یا مراکز تجاری کوچک مورد استفاده قرار می‌گیرد. در برخی از مکان‌های دور افتاده که مجبور به استفاده از ژنراتورهای دیزلی هستند مالکان محل ترجیح می‌دهند که از توربین‌های بادی استفاده کنند تا از ضرورت سوزاندن سوخت‌ها جلوگیری شود. در برخی موارد نیز برای کاهش هزینه‌های خرید برق یا برای استفاده برق پاک از این توربین‌ها استفاده می‌شود. برای تغذیه منازل دورافتاده از توربین‌های بادی با اتصال به باتری استفاده می‌شود. در ایالات متحده استفاده از توربین‌های بادی متصل به شبکه در رنج‌های ۱ تا ۱۰ کیلووات برای تغذیه منازل به طور فزاینده‌ای در حال گسترش است. توربین‌های متصل به شبکه در هنگام کار نیاز به استفاده از برق شبکه را از بین می‌برند. در سیستم‌های جدا از شبکه یا باید از برق به صورت دوره‌ای استفاده کرد و یا از باتری برای ذخیره‌سازی انرژی استفاده کرد. در مناطق شهری که امکان استفاده از باد در مقیاس‌های زیاد وجود ندارد نیز ممکن است از انرژی بادی در کاربردهای خاصی مانند پارک مترها یا درگاه‌های بی‌سیم اینترنت با استفاده از یک باتری یا یک باتری خورشیدی استفاده شود تا ضرورت اتصال به شبکه از بین برود.

 

آثار زیست محیطی :

انتشار CO۲ و آلودگی

توربین‌ها بادی برای راه‌اندازی و بهره‌برداری نیاز به هیچ گونه سوختی ندارند و بنابراین در قبال انرژی الکتریکی تولید آلودگی مستقیمی ایجاد نمی‌کنند. بهره‌برداری از این توربین‌ها دی‌اکسید کربن, دی‌اکسید گوگرد, جیوه, ذرات معلق یا هیچ گونه عامل آلوده کننده هوا تولید نمی‌کند. اما توربین‌ها بادی در مراحل ساخت از منابع مختلفی استفاده می‌کنند. در طول ساخت نیروگاه‌های بادی باید از موادی مانند فولاد, بتن,آلمینیومو... استفاده کرد که تولید و انتقال آنها نیازمند مصرف انواع سوخت‌هاست. دی‌اکسید کربن تولید شده در این مراحل پس از حدود ۹ ماه کار کردن نیروگاه جبران خواهد شد. نیروگاه‌های سوخت فسیلی که برای تنظیم برق تولیدی در نیروگاه‌های بادی مورد استفاده قرار می‌گیرند موجب ایجاد آلودگی خواهند شد: بعضی از اوقات به این نکته اشاره می‌شود که نیروگاه‌های بادی نمی‌توانند میزان دی‌اکسید کربن تولیدی را کاهش دهند چراکه برق تولیدی از طریق نیروگاه بادی به دلیل نامنظم بودن همیشه باید به وسیله یک نیروگاه سوخت فسیلی پشتیبانی شود. نیروگاه‌های بادی نمی‌توانند به طور کامل جایگزین نیروگاه‌های سوخت فسیلی شوند اما با تولید انرژی الکتریکی مبنای تولیدی نیروگاه‌های حرارتی را کاهش داده و از تولید آنها می‌کاهند که به این ترتیب میزان انتشار دی‌اکسید کربن کاهش می‌یابد.

 

تاثیرات بوم شناختی :

برخلاف نیروگاه‌های هسته‌ای و نیروگاه‌های سوخت فسیلی که مقدار زیادی آب را برای خنک کردن منتشر می‌کنند, نیروگاه‌های بادی نیازی به آب برای تولید انرژی الکتریکی ندارند. درباره نشت روغن یا آب سیالی که در نیروگاه‌ها مورد استفاده قرار می‌گیرد حوادث متعددی گزارش شده. در برخی موارد سیال وارد آب شرب مناطق اطراف نیز می‌شود که خسارت‌هایی را بر جای خواهد گذاشت. این سیال‌های معمولاً در اثر حرکت در پره توربین موادی را در خود حل کرده و سپس در محیط پراکنده می‌کنند.

 

استفاده از زمین :

توربین‌های بادی باید ده برابر قطرشان در راستای باد غالب و پنج برابر قطرشان در راستای عمودی از هم فاصله داشته باشند تا کمترین تلفات حاصل شود. در نتیجه توربین‌های بادی تقریباً به ۰٫۱ کیلومترمربع مکان خالی به ازای هر مگاوات توان نامی تولیدی نیازمند هستند. معمولا برای نصب این توربین‌ها نیازی به پاکسازی درختان منطقه نیست. کشاورزان می‌توانند برای ساخت این توربین‌ها زمین‌های خود را به شرکت‌های سازنده اجاره می‌دهند. در ایالات متحده کشاورزان حدود ۲ تا ۵ هزار دلار به ازای هر توربین در هر سال دریافت می‌کنند. زمین‌ها مورد استفاده قرار گرفته برای توربین‌ها بادی همچنان می‌توانند برای کشاورزی و چرای دام مورد استفاده قرار بگیرند چراکه تنها ۱٪از زمین برای ساخت پی توربین و راه دسترسی مورد استفاده قرار می‌گیرد و به عبارت دیگر ۹۹٪زمین هنوز قابل استفاده‌است. توربین‌های بادی عموما در مناطق شهری نصب نمی‌شوند چراکه ساختمان‌ها جلوی وزش باد را سد می‌کنند و قیمت زمین نیز معمولاً زیاد است. با این حال پروژه نمایشی تورنتو اثبات کرد که نصب توربین‌های بادی در چنین مکان‌هایی نیز ممکن است.

آثار بر روی حیات وحش :

پرندگان

برخی از توربین‌های بادی موجب کشته شدن پرنده‌ها به ویژه پرنده‌های شکاری می‌شوند البته مطالعات نشان می‌دهد که تعداد پرنده‌های کشته شده توسط توربین‌های بادی در مقابل عوامل انسانی دیگر کشته شدن پرندگان مانند خطوط برق, ترافیک, شکار, ساختمان‌های بلند و به ویژه استفاده از منابع آلوده انرژی تعداد بسیار ناچیزی است؛ برای مثال در انگلستان که در آن چندین هزار توربین بادی وجود دارد تقریباً در هر سال تنها یک پرنده در هر توربین کشته می‌شود در حالی که تنها در اثر آثار مخرب استفاده از خودروها هر سال در حدود ۱۰ میلیون پرنده کشته می‌شوند. در ایالات متحده توربین‌ها هر سال در حدود ۷۰٬۰۰۰ پرنده را می‌کشند که در مقابل ۵۷ میلیون پرنده کشته شده در اثر استفاده از خودروها یا ۹۷٫۵ میلیون پرنده کشته شده در اثر برخورد با شیشه‌ها مقدار اندکی است. مقاله‌ای در رابطه با طبیعت اظهار داشته که هر توربین به طور متوسط هر سال ۰٫۰۳پرنده یا به عبارتی ۱ پرنده در طول ۳۰ سال می‌کشد.

 

بزرگترین توربین بادی جهان :

بزرگترین توربین بادی جهان درحال حاضر در دریای شمال در فاصله ۲۴ کیلومتری سواحل اسکاتلندنصب شده و در حال آزمایش است. این نخستین باری است که توربین‌هایی به این ابعاد در دریا آزمایش می‌شوند. ژنراتور توربین‌ها در عمق ۴۴ متری سطح دریا کار گذاشته شده‌است که در نوع خود رکورد جدیدی است.توربین‌هایی در این ابعاد برای نصب در دریا و دور از ساحل مناسب هستند تا از وزش پیوسته و بدون تلاطم باد بهره‌گیری کنند. انتظار می‌رود این توربین‌ها ۹۶ درصد اوقات شبانه‌روز (۸۴۴۰ ساعت در سال) در حال کار باشند.

انرژی زمین گرمایی :

انرژی الکتریکی زمین‌گرمایی برقی است که با استفاده از منابع حرارتی ذخیره شده زیر پوسته زمین تولید می‌شود. تاریخ اولین استفاده از انرژی زمین گرمایی به شاهزاده پیرو گینوری کونتی در ایتالیا بازمی‌گردد. امروزه بزرگترین نیروگاه زمین گرمایی جهان در منطقه آتشفشانی آبفشان‌ها (The Geysers) در کالیفرنیا واقع شده‌است. تا سال ۲۰۰۸ انرژی زمین گرمایی سهمی کمتر از یک درصد از تولید کل انرژی الکتریکی جهان را به خود اختصاص داده.

 

انرژی زمین گرمایی :

انرژی زمین گرمایی حرارت داخلی زمین است که به وسیله یک سیال مانند بخار یا آب داغ یا هر دو به سطح زمین انتقال می‌یابد. از این انرژی گرمایی در سطح زمین می‌توان در کاربردهای متفاوت از جمله تولید برق استفاده کرد.

 

انواع تکنولوژی‌های تبدیل :

نیروگاه‌های زمین گرمایی با توجه به تکنولوژی در دسترس, هزینه ساخت و موقعیت محل از روش‌های مختلفی برای استخراج و تبدیل انرژی زمین گرمایی استفاده می‌کنند.

 

نیروگاه‌های بخار خشک :

این دسته نیروگاه‌ها از آب‌های داغ موجود در پوسته زمین که معمولاً به صورت بخار به سطح زمین می‌رسند استفاده می‌کنند. این بخار مستقیما وارد یک توربین که به مولدوصل شده می‌شود و از انرژی جنبشی آن برای چرخش توربین استفاده می‌شود. این روش ابتدایی‌ترین روش استفاده از انرژی زمین گرمایی به حساب می‌آید و برای واولین بار در لاردالرو (Lardarello)در ایتالیاو در سال ۱۹۰۴ به کار گرفته شد. این نوع نیروگاه‌ها با وجود بهره‌وری بالایشان آب زیادی را به صورت بخار به همراه مقداری از گازهای مختلف در هوا آزاد می‌کنند.

 

نیروگاه‌های تبدیل به بخار فلش (Flash Steam) :

در این دسته نیروگاه‌ها از سیال‌های با دما و فشار بالا (دمای بالای ۱۸۲ درجه) استفاده می‌شود. از آنجایی که آب در داخل زمین در تحت فشار بالایی قرار دارد همواره به صورت مایع است. در این دسته نیروگاه‌ها آب بیرون آمده از داخل زمین وارد مخزنی کم فشار می‌شود. پایین بودن فشار داخل مخزن موجب خواهد شد که سیال موجود در مخزن به سرعت بخار شود. سپس از بخار تولید شده برای چرخاندن توربین استفاده می‌شود. در صورتی که مقداری از سیال به صورت مایع در داخل مخزن باقی بماند این مایع در مخزن دوم به بخار تبدیل می‌شود.

 

نیروگاه سیکل دوگانه :

در این دسته از نیروگاه‌ها امکان استفاده از سیال در دمای پایین‌تر از ۱۸۰ درجه نیز وجود دارد. در این روش آب بیرون آمده از زمین برای گرم کردن سیالی دیگر با دمای جوش پایین مورد استفاده قرار می‌گیرد. گرمای ناشی از آب داغ سیال دوم را به سرعت بخار می‌کند و از این سیال برای چرخاندن توربین استفاده می‌شود. یکی از مزایای این نیروگاه‌ها آزاد نکردن بخار آب در محیط است و از طرف دیگر امکان پیدا کردن منابع زمین گرمایی در دمای پایین‌تر از ۱۸۰ درجه بسیار بیشتر است و به همین دلیل بیشتر نیروگاه‌های زمین گرمایی آینده از این نوع خواهند بود.

 

مزایا :

استفاده از انرژی زمین گرمایی دارای مزایای متعددی نسبت به استفاده از منابع سوخت‌های فسیلی است ولی مزیت اصلی آن عدم وجود هزینه‌های مربوط به تامین سوخت است. همچنین از نقطه نظر اثرات طبیعی میزان گازهای نامطلوب تولید شده در این نیروگاه‌ها اندک است. از دیگر مزایای این دسته نیروگاه می‌توان به ثابت بودن میزان انرژی استخراج شده در تمامی فصول سال و امکان کارکرد این نیروگاه‌ها به صورت ۲۴ ساعته نیز اشاره کرد. از دید اقتصادی استفاده از منابع زمین گرمایی میزان وابستگی قیمت برق تولیدی به قیمت سوخت‌های فسیلی را هم کاهش می‌دهد.

 

معایب :

از منظر مهندسی باید به این نکته اشاره کرد که سیال مورد استفاده در نیروگاه‌های زمین گرمایی دارای خاصیت خورندگی در فلزات است و از جهت دیگر پایین بودن دمای سیال (نسبت به سیال در بقیه نیروگاه‌های حرارتی) در طول مسیر انتقال سیال موجب افزایش این خاصیت خورندگی می‌شود. بر طبق اصول ترمودینامیک پایین بودن دمای سیال همچنین موجب محدود شدن بهره‌وری نیروگاه می‌شود. بیشتر انرژی گرمایی استخراج شده تلف می‌شود اما حرارت پایین خروجی نیروگاه را می‌توان در مکان‌های مختلف مانند گلخانه‌ها, خشک کردن الوار و یا گرم کردن فضاهای داخلی به کار گرفت. نگرانی‌های طبیعی مختلفی پیرامون ساخت نیروگاه‌های زمین گرمایی وجود دارد که مهمترین آن کاهش پایداری زمین در مناطق اطراف محل ساخت نیروگاه است این عیب در نیروگاه‌های زمین گرمایی پیشرفته به علت تزریق آب در بین سنگ‌هایی که قبلا با آب تماس نداشته‌اند بیشتر ایجاد می‌شود. این تاثیر به دلیل تزریق آب در زمین به وجود می‌آید. بخار بازگشته از زمین ترکیباتی مانند کربن دی اکسید, گوگرد و... را به همراه خواد داشت؛ با این حال میزان گازهای آزاد شده حدود ۵٪مواد منتشر شده به وسیله نیروگاهی فسیلی با همین ظرفیت است. نیروگاه‌های زمین گرمایی می‌توانند با نصب یک سیستم کنترل کننده مواد منتشر شده میزان انتشار کربن دی اکسید را به کمتر از ۰٫۱٪برسانند. آب خارج شده از زمین همچنین حاوی میزان اندکی از عناصر خطرناک مانند جیوه, آرسنیک, آنتیمون و... نیز خواهد بود. در این حالت دفع این آب‌ها به رودخانه‌های یا دریا می‌تواند خطرات زیست محیطی را به همراه داشته باشد. گرچه محل‌های مستعد برای استخراج انرژی زمین گرمایی می‌توانند تا چندین دهه انرژی گرمایی را تامین کنند ولی سرانجام گرمای استخراجی تمام خواهد شد. برخی این سرد شدن زمین در محل استخراج انرژی را دلیلی بر تجدیدناشدنی بودن این انرژی تفسیر می‌کنند. برای مثال دومین نیروگاه زمین گرمایی جهان از نظر قدمت درWairakeiبا مشکل کاهش تولید روبه‌رو شده‌است. با این حال به نظر می‌رسد که این محل‌ها می‌توانند در طول زمان گرمای خود را بازیابند. بر طبق یک تخمین پتانسیل سایت زمین گرمایی واقع در ایسلند انرژی معادل ۱۵۰۰ تراوات یا ۱۵ تراوات در طول صد سال خواهد بود حال آنکه کل تولید برق زمین گرمایی از این سایت در حال حاضر ۱٫۳تراوات در سال است.

نیروگاه زمین گرمایی در ایران :

با توجه به قرار گرفتن ایران در یک کمربند آتشفشانی امکان بهره‌برداری از این انرژی در ایران نیز وجود دارد. اولین نیروگاه زمین گرمایی ایران در استان اردبیل و در دامنه کوه سبلان با ظرفیت نهایی بالغ بر ۲۵۰ مگاوات در سال ۸۵ به بهره‌برداری رسید. با توجه به تحقیقات انجام شده امکان ساخت این دست نیروگاه‌ها در مناطق مستعد دیگری نیز مانند دامنه کوه تفتان و مناطق سهند و سبلان وجود دارد.

 

انرژی امواج و جز و مد :

به هر آشفتگی در محیط که در فضایا فضازمان منتشر می‌شود و اغلب حامل انرژی است موج می‌گویند. اگر این آشفتگی در میدان‌های الکترومغناطیسی باشد، آن را موج الکترومغناطیسی می‌نامند. در امواج الکترومغناطیسی میدان‌های الکتریکی و مغناطیسی به طور عمود بر یکدیگر نوسان می‌کنند و با سرعت نورانتشار پیدا می‌کنند. نورو امواج رادیویی از این نوع هستند.امواج مکانیکی نوعی از امواج هستند که در یک محیط مادی منتشر می‌شوند. انتشار این گونه امواج به دلیل نیروهای داخلی در محیط در اثر تغییر شکل ایجاد شده (آشفتگی) می‌باشد. این نیروها تمایل به بازگرداندن محیط به حالت اولیه را دارند. بعضی از انواع امواج مکانیکی امواج صوت، امواج زلزله و امواج آب است.

موج‌ها به دو دسته امواج طولی و امواج عرضی تقسیم می‌شوند. در امواج طولی، سرعت انتشار موج موازی با حرکت نوسانی آن است، در حالی که، در امواج عرضی این سرعت عمود بر آن است. امواج الکترو مغناطیسی از نوع امواج عرضی هستند.

حركت موجي نوساني ساده

 

یک حرکت موجی-نوسانی ساده.

 

موج الکترومغناطیس :

 

امواج الكترو مغناطيس

 

بازه قابل رویت فقط قسمت کوچکی از طیف امواج الکترومغناطیسی را تشکیل می‌دهد.

 

تعاریف :

توافق بر روی یک تعریف واحد برای واژه موج چیزی است که امکان ندارد. یک ارتعاش یا لرزش (ویبراسیون) را می‌توان به صورت یک حرکت به عقب و جلو پیرامون نقطهٔmدر اطراف یک مقدار مرجع تعریف نمود. با وجود این، تعریف مشخصات کافی برای موج که باعث کیفیت بخشیدن به آن می‌شود موضوعی قابل انعطاف است. این اصطلاح اغلب به طور ذاتی به صورت انتقال نوسانات در فضا مطرح می‌شود که با حرکت شی که فضا را پر کرده یا اشغال نموده در ارتباط نیست. در یک موج انرژی یک ارتعاش عبارتست ازانرژی شی که دارد از منبع به فرم یک اغتشاش و نوسان در داخل محیطی که آن را احاطه کرده یا در پیرامون آن است دور می‌شود (هال 1980). با وجود این، این حرکت در مورد یک موج ساکن و ایستاده، مسئله برانگیز است. برای مثال، یک موج روی یک طناب یا نخ که انرژی در آن به طور مساوی در هر دو جهت منتشر می‌شود یا برای امواج الکترومغناطیسی یا امواج نوری در خلا، جاییکه مفهوم محیط واسطه‌ای دیگر قابل کاربرد نیست. به خاطر چنین دلایلی نظریهٔموج بیان کننده یک شاخه خاص از فیزیک است، که به خواص موج مستقل از آنکه منشا فیزیکی آن چه چیزی باشد وابسته‌است (استراوسکی و پتاپو،1999). این خاصیت منحصر بفرد که با مستقل بودن از منشا فیزیکی و با تکیه بسیار روی منشا در موقعی که یک مورد خاص از یک فرآیند موجی را در نظر می‌گیریم همراه می‌گردد.

مثال: آکوستیک از اوپتیک متمایز می‌گردد. به این صورت که امواج صوتی دارای منشا مکانیکی، بیشتر از امواج الکترومغناطیسی در موقع انتقال انرژی لرزشی یا ارتعاشی به انرژی مکانیکی تبدیل می‌شوند. مفاهیمی از قبیل جرم، گشتاور، اینرسی، یا خاصیت کشسانی(ارتجاعی) موقع شرح دادن آکوستیک بسیار مهم هستند. (برخلاف اوپتیک هنگام بررسی فرآیندهای موجی). این تفاوت در منشا باعث ایجاد مشخصات موجی خاص متفاوت از محیطی که با آن سر و کار داریم می‌شود . (به عنوان مثال، در موارد مربوط به هوا: فشار تابش موج‌های تلاطمی و... . در موارد جامد(اجسام صلب): امواج نور، تجزیه نور و ...) خواص دیگر،اگر چه آنها هم معمولاً از طریق منشا مشخص می‌شوند، ممکن است به تمام امواج تعمیم داده شود. به عنوان مثال،با توجه به آنهایی که بر اساس منشا مکانیکی پایه گذاری شده اندمی توان اغتشاشاتی در فضابرای امواج آکوستیک بر حسب زمان انجام داد اگر وفقط اگر وسیله مورد بحث بسیار سخت و یا بسیار نرم و انعطاف پذیر نباشد . اگر تمام اجزای تشکیل دهنده وسیله به صورت محکم به یکدیگر متصل شده باشند، تمام اجزای آن به شکل یک جسم واحد و بدون هیچ گونه تاخیری در انتقال نوسان، به ارتعاش در می‌آیند. که در این صورت هیچ حرکت موجی نخواهیم داشت. از سوی دیگر، اگر تمامی اجزا مستقل از یکدیگر بودند، هیچ انتقال ارتعاشی وجود نداشت. عبارات مذکور در بالا با فرض آنکه موج به هیچ منشا نیاز نداشته باشد بی معنی خواهد بود،اگر چه آنهاویژگی که از خود بروز می‌دهندمستقل از منشا آنها باشد: در طول یک موج، فاز یک ارتعاش (مکان و موقعیتی که در داخل سیکل نوسان اشغال کرده ) برای نقاط مجاور متفاوت می‌با شد و علت آن نیز این است که نوسان در زمان‌های متمایز به این نقاط می‌رسد. به صورت مشابه، پردازش فرآیندهای موج که از مطالعه درباره پدیده‌های موجی با سرچشمه‌هایی متفاوت با سر چشمه امواج صوتی حاصل می‌شود می‌تواند برای فهم هر چه بیشتر پدیده‌های صوتی بسیار با اهمیت باشد. یک مثال مناسب از این نمونه، قاعده تداخل یانگ می‌باشد ( یانگ،1802 ) این اصل برای اولین بار در تحقیقات یانگ پیرامون نور مطرح شد و هنوز نیز می‌تواند مطابق تعدادی از مفاهیم خاص دیگر ( برای مثال ،پخش شدن صوت توسط صدا ) موضوعی پژوهشی در مطالعه صوت باشد.

ویژگی‌ها :

صفات:

امواج متناوب توسط فاکتورهای اوج (بالاترین نقاط در امواج) و پایین‌ترین نقاط توصیف می‌شوند و البته ممکن است گاهی بر اساس طولی یا عرضی طبقه بندی گردند. امواج عرضی به امواجی اطلاق می‌شود که دارای ارتعاش‌هایی عمود بر جهت و انتشار موج باشند. مانند امواج طناب و امواج الکترومغناطیسی. امواج طولی دسته‌ای از امواج هستندکه در جریان انتشار موج دارای نوسانات موازی هستند مانند بیشتر امواج صوتی. زمانی یک شی بر روی موج یک آبگیر به بالا و پایین برود، حرکت بر روی یک مسیر دوار را تجربه می‌کند زیرا این امواج، امواج عرضی یا سینوسینمی‌با شند.

A=در آب‌های عمیق

B=در آب‌های کم عمق

1=عبور موج

2=اوج

3=افت

ریز موج‌ها روی سطح برکه در حقیقت ترکیب طولی و عرضی امواج هستند. بنابراین نقاط روی سطح، مسیر دایره‌ای را دنبال می‌کنند ونقاطی که روی سطح قرار می‌گیرنداز این مسیر دایره‌ای تبعیت می‌کنند.تمام امواج می‌توانند موارد زیر را تجربه کنند:

  • 1. موج مستقیم از طریق برخورد با سطح منعکس کننده تغییر می‌یابند = انعکاس
  • 2. موج مستقیم از طریق مداخله یک شی جدید تغییر می‌یا بند = انعکاس

خم شدن امواج مانند تاثیر متقابل آنها در برابر موانعی است که در مسیرشان وجود دارد = پراش بیشترین شناخت طول موج روی حالت پرش شی است.

  • 1. موقعیت دو موج که با هم برخورد می‌کنند =تداخل
  • 2. موجی که با بسامد شکسته می‌شود = انتشار
  • 3. حرکات موج نوری در مسیر مستقیم –خطوط انتشار

یک موج اگر بتواند فقط در مسیر مستقیم نوسان کند دوگانگی می‌یابد. دوگانگی عرضی موج حاکی از نوسان مستقیم آن است و عمود برجهت حرکت است. امواج طولی مانند امواج صوتی دوگانگی بروز نمی‌دهند زیرا این امواج نوسان مستقیم در طول حرکت دارند و با فیلتر پولازیزه گر پولاریزه می‌شوند.

مثال: امواج سطح اقیانوس که با صخره‌ها برخورد می‌کنند. امواج سطح اقیانوس که پرتلاطم هستند در میان آب منتشر می‌شوند. امواج رادیو یی، ریز موج‌ها، مادون قرمز، امواج مرئی، فرابنفش، پرتو xو پرتو گاما از پرتو افکنی پرتوهای الکترومغناطیسی ساخته شده‌اند. در این شرایط انتشار بدون وجود محیط در میان خلأ ممکن است. این امواج الکترومغناطیس در 299 و 792 و 458 متر بر ثانیه در خلأ حرکت می‌کنند.

 

انواع موج :

صوت یک موج مکانیکی است که در میان هوا، مایعات و جامدات منتشر می‌شود. موج ترافیک (یعنی انتشار متفاوت و متراکم وسایل نقلیه و ...) که می‌تواند به عنوان مدلی از امواج سینماتیک باشد. مانند اولین طرح آقای .J.Mلایت هیل. امواج لرزه‌ای در زمین به صورت برشی Sو طولی Pمی‌باشند که در سطح زمین و بین لایه‌ها به موجهای لاو Lو رایلی Rهم تبدیل می‌شوند. امواج گرانشی که عبارتند از نوسانات و بالا و پایین شدن در انحنای زمان -فضا که به وسیله اصل عمومی نسبیت پیش بینی شده‌است .این امواج چند بعدی هستند و به طور تجربی مشاهده می‌شوند.

امواج ساکن: در گردش سیالات اتفاق می‌افتند و از طریق تأثیر کرولیز ذخیره می‌شوند.

توصیف ریاضی :

یک موج با دامنه ثابت است.

شکل و نمایشی از یک موج (منحنی آبی رنگ که خیلی سریع تغییر می‌کند) و پوشش آن (منحنی قرمزکه با سرعت آهسته تری تغییر می‌کند) . به عقیده ریاضیدانان ساده‌ترین یا اساسی‌ترین موج،امواج هارمونیک سینوسی است که آن را با f(x,t) = Asin(ωtkx)),توصیف می‌کند. که Aدامنه موج است یعنی بیشترین مقدار بی نظمی در طول نوسان موج (بیشترین فاصله از بلندترین نقطه اوج تا تعادل در یک نمونه کامل،یعنی ماکزیمم مسافت قایم بین مبدأ و موج.) واحد دامنه به نوع موج بستگی دارد. موج‌هایی که روی طناب هستند دامنه شان به صورت یک بعد بیان می‌شود. امواج صوتی مانند فشار(پاسکال) و امواج الکترومغناطیس مانند دامنه‌ای از میدان الکتریکی (ولت / متر)بیان می‌شوند. دامنه ممکن است ثابت باشد (در این شرایط موج یا cwهست یا موج ثابت) یا ممکن است با زمان و موقعیت تغییر کند. فرم متغیر دامنه، موج پوششی نامیده می‌شود. طول موج ( اشاره به λ) مسافت بین دو قله متوالی (یا یک فرورفتگی و برجستگی) است. معمولاً واحد آن متر است و همچنین با نانومتربرای طیف الکترومغناطیس بخش نوری بیان می‌شود. یک تعداد موج Kمی‌تواند با طول موج به هم ربط داده شود. امواج را می‌توان به وسیله حرکت هارمونیک نشان داد. دوره T، زمان برای یک نوسان کامل موج است.

alt

 

بسامدf(که با νنشان می‌دهند) تعداد دوره‌هایی است که در واحد زمان انجام می‌دهند (برای مثال یک ثانیه) و آن با هرتز اندازه گیری می‌شود.

alt

بسامد ودوره عکس یکدیگرند. بسامد زاویه‌ای ωبیان کننده بسامد از نظر رادیان است و بستگی به بسامد دارد. بسامد زاویه‌ای با بسامد از طریق رابطه زیر ارتباط دارد:

alt

 

دو نوع سرعت وجود دارد که امواج را به هم پیوند می‌دهد. اولین سرعت سرعت انتشار موج است که توسط

alt

 

بیان می‌شود و دومین، سرعت گروهی است که سرعت متغیری در شکل‌های متنوع موج ایجاد می‌کند. این سرعت می‌تواند به موج منتقل شود. و با فرمول زیر ارائه می‌شود:

alt

 

معادله موج :

معادله دیفرنسیل موج به صورت زیر نوشته می‌شود. 

alt

 

در اینجا cسرعت انتشار موج می‌باشد. جواب این معادله (در حالت یک‌بعدی) به صورت زیر است (Aدامنه موج است.):

alt

 

kعدد موج، ωسرعت زاویه‌ای، λطول موج، φفاز، Tدوره تناوب و fبسامد حرکت نوسانی نام دارند.

alt

 

معادله موج یک معادله دیفرانسیلی است که در هر زمان، تحول موج هارمونیک را توصیف می‌کند . معادله موج فرم متفاوتی دارد و تا اندازه‌ای بستگی به این دارد که موج چگونه منتقل می‌شود و معمولاً از طریق حرکت به دست می‌آید. توجه به دامنه موج یعنی حر کت پایین طناب در طول محورxو متغیر u(که معمولاً وابسته به xوt) alt   معادله موج در سه بعد است که با فرمول زیر بیان می‌شود.

 

alt

كه دلتا 2 به صورت معادله لاپلاسی می‌باشد.

سرعت vهم به شکل موج و هم به محیطی که موج از طریق آن منتقل می‌شود بستگی دارد . یک راه حل کلی برای معادله موج در یک بعد تو سط دی–آلبرت داده شده‌است. که به این صورت است:

alt

این راه حل را می‌توان به صورت دو پالس که در جهات مخالف حرکت می‌کنند( Fدر جهت xو Gدر خلاف جهت x)در نظر گرفت. اگر مادر معادله بالابه جای x ، xوyوzجایگزین کنیم آن وقت ما انتشار موج در سه بعد را تو صیف می‌کنیم. معادله شرودینگر رفتار موج گونه ذرات را در مکانیک توصیف می‌کند. راه حل‌هایی برای این معادله، عبارتند از توابع موجی که می‌توانند به شرح سرانجام احتمالی ذرات بپردازند . موج ساده یا متحرک که گاهی موج پیش رو نیز نامیده می‌شود، اختلالی است که با دو عامل زمان tو مسافت zتغییر می‌کند. که با فرمول زیر ارائه می‌شود.alt

جایی که (A(z,tپوشش دامنه‌ای که برای موج داریم و Kتعداد موج و φنمایانگر فاز موج است. سرعت فاز vpاین موج توسط    altنشان داده می‌شود. ( λنمایانگر طول موج است.

 

امواج ایستاده :

امواج ساکن:

موج ایستاده در وضعیت ساکن

نقاط قرمز نمایانگر گره‌های موج هستند. موج ایستاده که با عنوان موج ساکن نیز شناخته می‌شود موجی است که در وضعیت ثابت باقی می‌ماند. این پدیده زمانی اتفاق می‌افتد که وسیله‌ای در مسیری خلاف جهت موج در حرکت باشد و یا این موج می‌تواند در نتیجه تداخل دو موج از دو سوی متفاوت ایجاد شود. مجموع دو موج منتشر شده از سوی مقابل هم (با دامنه و بسامد یکسان) یک موج ایستاده را به وجود می‌آورد. به طور عادی، موج ایستاده زمانی تولید می‌شود که انتشار موج دورتر از مانع باشد. بنابراین، علت انعکاس موج وجود یک موج مخالف است. به عنوان مثال، زمانی که تار ویولن جابه جا می‌شود امواج طولی منتشر می‌شوند تا جایی که تار در جایش محکم قرار گیرد. بالاتر از جایی که موج بر می‌گردد در خرک و مهره دو موج در فاز مخالف هم هستند و یکدیگر را دفع می‌کنند در نتیجه یک گره تولید می‌شود. در وسط راه، بین دو گره یک شکم تولید می‌شود جایی که دو موج از سوی مقابل هم منتشر می‌شوند موج‌ها روی هم افزایش می‌یابند و عضو بیشینه می‌شوند و به طور معمول انرژی برای انتشار موج نمی‌ماند.

از نگاه دیگر:

لرزش طبیعی اکوسیتیک، تشدید کننده هلم هولتز و دریچه لوله صوتی.

انتشار میان طناب

سرعت موج در حال حرکت در امتداد یک تار مرتعش شونده به طور مستقیم متناسب با ریشه دوم کشش تار به چگالی خطی (μ)است:

alt

 

پدیده کشند یا جزر و مد :

پدیدهٔکِشَند یا جزر و مد اساساً زاییده نیروی گرانش کره ماه است، آشکار است که دریاها در سنجش با خشکی‌های زمین نرمش‌پذیری بیشتری دارند و از این روی در برابر نیروی کشش ماه کمتر ایستادگی می‌کنند، به همین مناسبت توده‌های آب در زیر پای ماه انباشته می‌گردند و پدیده‌ای را به نام «برکشند» (مد) ایجاد می‌کنند. هم‌زمان با «برکشند» رو به ماه، «برکشند» دیگری در آن سوی کره زمین ایجاد می‌گردد بدین‌سان که آبهای آن سوی کره زمین که از ماه بدورند، کمتر متأثر گردیده و به اصطلاح عقب می‌مانند و آب-توده کلانی را ایجاد می‌کنند، بنابراین روزانه هر نقطه از سطح دریا دوبار دستخوش برکشند و دو بار هم دستخوش «فروکشند» (جزر) می‌گردد.

جنگل حرا

جنگل‌های حَرّادر هنگام فروکشند. جزیرهٔ قشم، ایران

بنابراین، به‌طور میانگین بازه زمانی میان دو برکشند و فروکشند پیاپی ۱۲ ساعت و ۵/۲۵ دقیقه است، درست نیمه زمانی که طول می‌کشد، تا ماه ظاهراً یک دور کامل گرد زمین بپیماید یعنی ۲۴ ساعت و ۵۱ دقیقه. کشند همراه با حرکت ظاهری ماه از افق شرقی

ناظر، به سمت افق غربی او پیش می‌روند. اثر گرانش خورشید در کشند نسبت ‏به ماه در رده دوم اهمیت‏ برخوردار است، زیرا بازه آن بیشتر (فاصله خورشید از زمین یکصد و پنجاه میلیون کیلومتر) است، از این‌رو نسبت نیروی کشندزای خورشید تنها پیرامون ۷ درصد نیروی ماه است. هنگامی که نیروهای کشندزای ماه و خورشید هماهنگ عمل می‌کنند، مثلاً هنگام ماه نو که هر دو در یک طرف زمین هستند، جزر و مدها در بیشینه خود هستند و به نام کشند بهاری یا «مهکشند» (spring tide) نامیده می‌شود، حد دیگر وقتی است که خورشید و ماه باهم زاویه ۹۰ درجه (تربیع) می‌سازند در این هنگام جزر و مد را به کمینه و به کشندهای کوچک یا «کهشکند» (neap tide) بدل می‌سازند. نزدیکی ماه نیز تأثیری در بلندی کشند دارد، هنگامی که ماه در فرودینه (حضیض) زمینی قرار دارد نیروی کشندزای آن به اندازه ۲۰% بیش از حد عادی است. گرانش ماه سبب می‌شود افزون بر آماسیدن آبهای کره زمین، خشکی‌ها نیز دستخوش تورم گردند که در سنجش با آماس آبها نامحسوس است. نیروی برآمده از گرانش ماه و لنگری که از جانب انباشته شدن آبها به وجود می‌آید، سبب می‌شوند چرخش محوری زمین به آرامی ایست (ترمز) کند و بدین‌سان بر طول شبانه‌روز زمینی می‌افزایند. بررسی خطوط رشد و نمو سنگواره‌های مرجانی بیانگر آن است که در ۳۵۰ میلیون سال پیش طول شبانه‌روز حدود سه (۳) ساعت کوتاهتر از شبانه‌روز کنونی بوده و طول سال خورشیدی به چیزی حدود ۴۰۰ روز افزون می‌گردیده است.بررسی‌هایی که از روی پیشینه‌های بجا مانده از خورشیدگرفتگی‌هاو ماه گرفتگیهای گذشته به اجام شده، نشان می‌دهد که روند افزایش طول روزهای زمینی ‏۰۰۱۶% ثانیه در هر سده است.

 

 

جدول منابع :

 

فهرست منابع خارجی

ردیف

منبع

1

http://green.blogs.nytimes.com/2010/06/25/is-it-energys-turn-now

 

2

http://beyondzeroemissions.org/zero-carbon-australia-stationary-energy-plan-available-now-download-or-purchase-your-copy

3

http://planetologist.wordpress.com

4

http://www1.eere.energy.gov/industry/bestpractices/energymatters/archives/summer2010.html

5

http://www.oceanpowermagazine.net/2009/06/22/horns-rev2-the-danish-offshore-windfarm-in-the-north-sea-is-now-producing-power/

 

 

 

 

 

 

 

 

 

 

نور پردازي پل كابلي تبريز

روشنايي بيلبوردهاي جاده اي شيراز

نصب سيستم برق اضطراري (UPS) نداجا

طراحي سيستم اضطراري (LED) براي پتروشيمي تبريز

 ساير پروژه هاي انجام شده